JerryAnto's picture
Upload app.py
fb9b3a0
raw
history blame
1.7 kB
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, PreTrainedTokenizerFast
import requests
model = VisionEncoderDecoderModel.from_pretrained("sachin/vit2distilgpt2")
vit_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
tokenizer = PreTrainedTokenizerFast.from_pretrained("distilgpt2")
def vit2distilgpt2(img):
pixel_values = vit_feature_extractor(images=img, return_tensors="pt").pixel_values
encoder_outputs = generated_ids = model.generate(pixel_values.to('cpu'),num_beams=5)
generated_sentences = tokenizer.batch_decode(encoder_outputs, skip_special_tokens=True)
return(generated_sentences[0].split('.')[0])
import gradio as gr
inputs = [
gr.inputs.Image(type="pil", label="Original Image")
]
outputs = [
gr.outputs.Textbox(label = 'Caption')
]
title = "Image Captioning using ViT + GPT2"
description = "ViT and GPT2 are used to generate Image Caption for the uploaded image. COCO Dataset was used for training. This image captioning model might have some biases that we couldn't figure during our stress testing, so if you find any bias (gender, race and so on) please use `Flag` button to flag the image with bias"
article = " <a href='https://huggingface.co/sachin/vit2distilgpt2'>Model Repo on Hugging Face Model Hub</a>"
examples = [
["horses.png"],
["persons.png"],
["football_player.png"]
]
gr.Interface(
vit2distilgpt2,
inputs,
outputs,
title=title,
description=description,
article=article,
examples=examples,
theme="huggingface",
).launch(debug=True, enable_queue=True)