Spaces:
Runtime error
Runtime error
File size: 1,289 Bytes
10b912d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from typing import List, Any
import tiktoken
class AbstractCompressor:
base_model = None
tokenizer = None
gpt_tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo-16k")
def compress(self, original_prompt: str, ratio: float) -> dict:
"""
Input original prompt/sentence and compression ratio, return compressed prompt/sentence.\
:param original_prompt:
:param ratio:
:return: dict object
"""
# output content including
# {
# 'compressed_prompt': compressed prompt,
# 'ratio': compression ratio,
# 'original_tokens': token count of original prompt,
# 'compressed_tokens': token count of compressed prompt
# }
raise NotImplementedError()
def fit(self, datas: List[dict], valid_size: int) -> None:
"""
For trainable methods, call this function for training parameters.
Require training LongBench and valid set size.
:param datas:
:param valid_size:
:return:
"""
raise NotImplementedError()
def set_model(self, model: Any, **kwargs):
"""
Specify a trained or a pre-trained model.
:param model:
:param kwargs:
:return:
"""
pass
|