File size: 3,095 Bytes
c6a14bf
 
 
06fee9d
 
 
 
c6a14bf
 
 
 
552bf8e
c6a14bf
 
 
 
 
552bf8e
c6a14bf
0d6d320
c6a14bf
552bf8e
c6a14bf
8f819b8
 
c6a14bf
8f819b8
 
 
 
 
 
 
c6a14bf
 
 
 
 
 
 
 
 
 
8f819b8
c6a14bf
 
8f819b8
 
c6a14bf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
from compressor import PromptCompressor

import os
res = os.popen('python -m spacy download en_core_web_sm').read()
print(res)


def compressit(original_text, compressor1, ratio, maxlength):

    if compressor1=="Selective Context":
        compressor = PromptCompressor(type='SCCompressor', lang='en', model='gpt2', device='cpu')
    elif compressor1=="LLMLingua":
        return "Sorry, currently we cannot provide services for LLMLingua due to the Huggingface Token issue. Please try other compressors."
    elif compressor1=="LongLLMLingua":
        return "Sorry, currently we cannot provide services for LongLLMLingua due to the Huggingface Token issue. Please try other compressors."
    elif compressor1=="SCRL":
        compressor = PromptCompressor(type='SCRLCompressor', model_dir="models/gigaword-L8/", device="cpu", tokenizer_dir="sentence-transformers/paraphrase-distilroberta-base-v2")
    elif compressor1=="KiS":
        compressor = PromptCompressor(type='KiSCompressor', device="cpu", model_dir="philippelaban/keep_it_simple")
    else:
        compressor = PromptCompressor(type='SCCompressor', lang='en', model='gpt2', device='cpu')

    if compressor1 == "Selective Context":
        compressed_prompt = compressor.compressgo(original_prompt=original_text, ratio=float(ratio))
    else:
        if maxlength:
            compressed_prompt = compressor.compressgo(original_prompt=original_text, ratio=float(ratio), max_length=int(maxlength))
        else:
            gr.Warning("max_length is needed for this type of compressor. Please fill in and try again.")
            return "max_length is missing."
    gr.Warning("The prompt is generating, please wait patiently as it may take a long time to generate during busy hours.")
    return compressed_prompt["compressed_prompt"], compressed_prompt["ratio"]


demo = gr.Interface(
    fn=compressit,
    inputs=[
        gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="input", info="Enter the original prompt here."),
        gr.Dropdown(
            ["Selective Context", "LLMLingua", "LongLLMLingua", "SCRL", "KiS"], label="compressor", info="Choose your compressor here. \n Currently, we cannot support the online demo for LLMLingua and LongLLMLingua due to the Huggingface Token issue."
        ),
        gr.Textbox(lines=1, placeholder="Enter the compression ratio here...", info="Ratio only works for Selective Context, LLMLingua and LongLLMLingua."),
        gr.Textbox(lines=1, placeholder="Enter the max_length parameter (integer) if you are using SCRL or KiS", label="max_length", info="If you are using SCRL or KiS, fill in the parameter, if not, just ignore this.\n Hint: For SCRL, max_length should be shorter than the lenght of original prompt; For KiS, max_length should be longer than it.")
    ],
    outputs=[
        gr.Textbox(lines=1, info="Please wait patiently when proceeding it may take more than 2 minutes to generate since we are using CPUs for free."),
        gr.Textbox(lines=1, info="With the compression ratio of: ")
    ]
)

demo.launch(share=False)