Spaces:
Runtime error
Runtime error
File size: 11,609 Bytes
10b912d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import argparse
import shutil
import logging
import random
import time
from pprint import pprint
from collections import defaultdict
from pathlib import Path
from scrl.rewards import load_rewards
from scrl.data import load_data_for_training
from scrl.config import load_config
from scrl.model import load_model, LinearTokenSelector, labels_to_summary
import scrl.utils as utils
import scrl.sampling as sampling
import numpy as np
import torch
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoModel, AutoTokenizer
from sklearn import preprocessing
from nltk import word_tokenize
def print_if(x, do_print=True):
if do_print:
print(x)
class TrainingManager:
"""
Object for saving/loading model checkpoints and for tracking and saving
metrics measured during training, e.g. loss, rewards.
The following directory struture is build around one training run:
dir/
val_scores.json
checkpoints/
latest-model-500/
classifier.bin
encoder.bin
best-model-200/
[...]
series/
loss.npy
[...]
totals/
loss.npy
[...]
"""
def __init__(self, dir):
self.step = 0
self.total_seconds = 0
self.start_time = None
self.series = defaultdict(list)
self.totals = defaultdict(float)
self.dir = dir
dir.mkdir(exist_ok=True)
for subdir_name in ("checkpoints", "series", "totals"):
(dir / subdir_name).mkdir(exist_ok=True)
def start_clock(self):
self.start_time = time.time() - self.total_seconds
def load(self):
# load tracked data, e.g. loss, rewards etc.
for p in (self.dir / "series").iterdir():
k = p.name.split(".npy")[0]
self.series[k] = list(utils.load_numpy(p))
for p in (self.dir / "totals").iterdir():
k = p.name.split(".npy")[0]
self.totals[k] = utils.load_numpy(p)
# read latest training step
latest_model_dir = self.find_old_model("latest-model")
self.total_seconds = utils.read_json(self.dir / "time.json")["total_seconds"]
last_step = int(latest_model_dir.name.split("-")[-1])
self.step = last_step + 1
def update_metric(self, key, value):
self.totals[key] += value
self.series[key].append(value)
def mean_metric(self, key):
return self.totals[key] / (self.step + 1)
def save_latest_model(self, model, checkpoint_id):
self.save_model(model, checkpoint_id, prefix="latest-model")
def save_model(self, model, checkpoint_id, prefix):
old_model_dir = self.find_old_model(prefix)
model_dir = self.dir / "checkpoints" / f"{prefix}-{checkpoint_id}"
model_dir.mkdir()
model.save(
classifier_path = model_dir / "classifier.bin",
encoder_path = model_dir / "encoder.bin"
)
if old_model_dir:
shutil.rmtree(old_model_dir)
def find_old_model(self, prefix):
model_path = None
for p in (self.dir / "checkpoints").iterdir():
if p.name.startswith(f"{prefix}"):
model_path = p
return model_path
def is_empty(self):
latest_model_dir = self.find_old_model("latest-model")
return latest_model_dir is None
def save_data(self):
for k, v in self.series.items():
utils.save_numpy(v, self.dir / "series" / f"{k}.npy")
for k, v in self.totals.items():
utils.save_numpy(v, self.dir / "totals" / f"{k}.npy")
utils.write_json({
"step": self.step,
"total_seconds": self.total_seconds
}, self.dir / "time.json")
def label_variance(probs):
# batch, seq, 2
variances = []
for i in range(probs.size(0)):
distrib = probs[i, :, 0]
var = torch.var(distrib)
variances.append(var)
return var.mean().item()
def check_gradient(model):
is_zero = []
is_none = []
for name, param in list(model.named_parameters()):
if (param.requires_grad):
grad = param.grad
if grad is None:
is_none.append(name)
else:
gradsum = param.grad.sum().item()
if gradsum == 0:
is_zero.append(name)
print("zero-grad:", len(is_zero), is_zero)
print("none-grad:", len(is_none), is_none)
print()
def get_mean_max_prob(probs):
return probs.max(dim=2).values.mean().item()
def print_training_progress(args, manager, model, probs, argmax_summaries, sample_summaries, batch, argmax_details):
print(f"[step: {manager.step}] [duration(s): {round(manager.total_seconds)}]")
print(f"[example/s: {(args.batch_size * (manager.step + 1)) / manager.total_seconds:.3f}]")
print(f"[s/step: {manager.total_seconds / (manager.step+1):.3f}]")
print(f"[avg-loss: {manager.mean_metric('loss')}]")
print(f"[avg-max-prob: {manager.mean_metric('mean_max_prob'):.3f}]")
print(f"[avg-a-reward: {manager.mean_metric('argmax_reward'):.3f}]")
print(f"[avg-s-reward: {manager.mean_metric('sample_reward'):.3f}]")
print(f"[avg-len: {manager.mean_metric('argmax_len'):.1f}]")
print()
print(f"[a-reward: {manager.series['argmax_reward'][-1]:.3f}]")
print(f"[s-reward: {manager.series['sample_reward'][-1]:.3f}]")
print(f"[max-prob: {manager.series['mean_max_prob'][-1]:.3f}]")
print()
print("[sentences]")
print("\n".join(batch["document"]))
print("\n[current policy summaries]")
print("\n".join(argmax_summaries))
print("\n[sampled summaries]")
print("\n".join(sample_summaries))
print()
print("Reward Breakdown:")
pprint(argmax_details)
print()
check_gradient(model)
print("="*100)
def setup_model(args):
# setup/load model manager object
model_dir = Path(args.model_dir)
if args.fresh and model_dir.exists():
utils.ask_rmdir(model_dir)
manager = TrainingManager(model_dir)
if not manager.is_empty():
manager.load()
if not (model_dir / "config.json").exists():
shutil.copy(args.config, model_dir / "config.json")
# initialize new or load existing model
if manager.step == 0:
encoder = AutoModel.from_pretrained(args.encoder_model_id)
embedding_size = encoder.state_dict()["embeddings.word_embeddings.weight"].shape[1]
model = LinearTokenSelector(encoder, embedding_size).to(args.device)
else:
print("loading latest model from step", manager.step - 1)
model = load_model(
model_dir, prefix="latest", device=args.device
)
return manager, model
def setup_dataset_indices(args, step):
"""
Load pre-built indices that determine in which order we traverse a dataset.
If we continue interrupted training state, we move indices accordingly.
"""
dataset_indices = utils.batchify(
utils.load_numpy(args.indices),
args.batch_size
)
if step > 0:
utils.move_generator(dataset_indices, step)
return dataset_indices
def train(
args,
manager,
model,
tokenizer,
reward_generator,
dataset,
dataset_indices,
eval_func
):
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate)
n_train = len(dataset["train"])
device = args.device
model.train()
manager.start_clock()
for indices in dataset_indices:
step = manager.step
manager.total_seconds = time.time() - manager.start_time
if args.max_train_steps and step >= args.max_train_steps + 1:
break
if args.max_train_seconds and manager.total_seconds >= args.max_train_seconds:
break
optimizer.zero_grad()
batch = dataset["train"][indices]
input_ids = pad_sequence(
[torch.tensor(ids) for ids in batch["input_ids"]],
batch_first=True
).to(device)
logits = model(input_ids)
probs = torch.softmax(logits, dim=2)
argmax_labels = torch.argmax(logits, dim=2).to(device)
argmax_summaries = labels_to_summary(input_ids, argmax_labels, tokenizer)
argmax_rewards, argmax_details = reward_generator(batch["document"], argmax_summaries)
a_reward = np.mean(argmax_rewards)
(sample_probs, sample_summaries, sample_rewards, sample_details,
sample_labels, sample_data) = sampling.best_of_k_samples(
args, manager, tokenizer, reward_generator,
input_ids, batch, probs,
k_samples=args.k_samples,
)
s_reward = np.mean(sample_rewards)
if args.sample_aggregation == "max":
loss = (a_reward - s_reward) * sample_probs.sum(1).mean()
else:
loss = 0.
for sample_probs_i, s_rewards_i in zip(sample_data["probs"], sample_data["rewards"]):
s_reward_i = np.mean(s_rewards_i)
loss_i = (a_reward_i - s_reward_i) * sample_probs_i.sum(1).mean()
loss += loss_i
loss /= len(sample_data["rewards"])
if args.sample_aggregation == "mean" or a_reward != s_reward:
# not updating model if no reward difference, in case of single sample
loss.backward()
optimizer.step()
argmax_len = np.mean([len(word_tokenize(s)) for s in argmax_summaries])
manager.update_metric("time", time.time())
manager.update_metric("loss", loss.item())
manager.update_metric("argmax_reward", a_reward)
manager.update_metric("sample_reward", s_reward)
manager.update_metric("sample_prob", sample_probs.detach().cpu().numpy().mean())
manager.update_metric("mean_max_prob", get_mean_max_prob(probs))
manager.update_metric("label_variance", label_variance(probs))
manager.update_metric("argmax_len", argmax_len)
for rname, rvalues in argmax_details.items():
manager.update_metric(f"reward|{rname}", np.mean(rvalues))
if args.eval_every != None and (step > 0 and step % args.eval_every == 0):
eval_func(
args, manager, model, tokenizer, reward_generator,
dataset["validation"]
)
model.train()
if args.save_every != None and (step % args.save_every == 0):
manager.save_latest_model(model, step)
manager.save_data()
if args.print_every != None and (args.verbose and step % args.print_every == 0):
print_training_progress(
args, manager, model, probs,
argmax_summaries, sample_summaries, batch,
argmax_details
)
manager.step += 1
def setup_and_train(args, eval_func):
print_if("loading model", args.verbose)
manager, model = setup_model(args)
print_if("loading tokenizer", args.verbose)
tokenizer = AutoTokenizer.from_pretrained(args.encoder_model_id)
print_if("loading rewards", args.verbose)
reward_generator = load_rewards(args)
print_if("rewards:", reward_generator.reward_names)
print_if("loading dataset", args.verbose)
dataset = load_data_for_training(tokenizer, args.loader, args.dataset)
dataset_indices = setup_dataset_indices(args, manager.step)
train(
args,
manager,
model,
tokenizer,
reward_generator,
dataset,
dataset_indices,
eval_func
)
|