Spaces:
Runtime error
Runtime error
File size: 10,778 Bytes
10b912d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from sentence_transformers import SentenceTransformer, CrossEncoder
from sentence_transformers.util import pytorch_cos_sim
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForCausalLM
from nltk import word_tokenize
from collections import defaultdict
from pprint import pprint
from collections import Counter
from rouge_score import rouge_scorer
ROUGE_TYPES = ["rouge1", "rouge2", "rougeL"]
rouge_scorer = rouge_scorer.RougeScorer(
ROUGE_TYPES,
use_stemmer=True
)
def load_rewards(args):
rewards, names = [], []
for name, settings in args.rewards.items():
settings["device"] = args.device
print("Loading reward:", name)
pprint(settings)
print()
reward_cls = globals()[name]
reward_func = reward_cls(**settings)
rewards.append(reward_func)
names.append(name)
return RewardAggregator(rewards, names)
class RewardAggregator:
def __init__(self, reward_generators, reward_names):
self.reward_generators = reward_generators
self.reward_names = reward_names
self.weights = [rg.weight for rg in reward_generators]
self.n_rewards = len(reward_generators)
def __call__(self, sources, summaries):
name_to_scores = {}
for rg, name in zip(self.reward_generators, self.reward_names):
scores = rg(sources=sources, summaries=summaries)
name_to_scores[name] = scores
final_scores = []
for i in range(len(summaries)):
score = 0.
total_weights = 0.
for name, w in zip(self.reward_names, self.weights):
score += name_to_scores[name][i] * w
total_weights += w
score /= total_weights
final_scores.append(score)
return final_scores, name_to_scores
class Fluency:
def __init__(
self,
model_id="distilroberta",
weight=1,
type="masked",
device="cuda",
norm="max",
max_score=40.,
min_score=-30.,
):
tokenizer = AutoTokenizer.from_pretrained(model_id)
if type == "masked":
pad_token_id = tokenizer.pad_token_id
model = AutoModelForMaskedLM.from_pretrained(model_id).to(device)
else:
pad_token_id = tokenizer.eos_token_id
model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
self.model = model
self.tokenizer = tokenizer
self.weight = weight
self.device = device
self.max_score = max_score
self.min_score = min_score
self.pad_token_id = pad_token_id
self.norm = norm
assert self.norm in ("max", "minmax")
def ids_to_tokens(self, ids):
return [self.tokenizer._convert_id_to_token(id) for id in ids]
def __call__(self, sources=None, summaries=None, normalize_len=False):
summaries = [s if s != "" else " " for s in summaries] # breaks if string is empty
input_ids = [self.tokenizer.encode(text) for text in summaries]
lens = [len(ids) for ids in input_ids]
input_ids = [torch.tensor(ids) for ids in input_ids]
input_ids = pad_sequence(
input_ids,
batch_first=True,
padding_value=self.pad_token_id
).to(self.device)
with torch.no_grad():
output = self.model(input_ids=input_ids, labels=input_ids)
logits = output["logits"]
scores = []
for i in range(logits.size(0)):
i_scores = []
for j in range(logits.size(1)):
tok_idx = input_ids[i, j]
if tok_idx == self.pad_token_id:
break
score = logits[i, j, tok_idx].item()
i_scores.append(score)
i_score_max = np.mean(i_scores) / self.max_score
i_score_minmax = (np.mean(i_scores) - self.min_score) / (self.max_score - self.min_score)
if self.norm == "max":
i_score = i_score_max
else:
i_score = i_score_minmax
scores.append(i_score)
return scores
class BiEncoderSimilarity:
def __init__(
self,
model_id="all-distilroberta-v1",
device="cuda",
weight=1
):
self.model = SentenceTransformer(model_id).to(device)
self.weight = weight
def __call__(self, sources=None, summaries=None):
src_embs = self.model.encode(sources)
sum_embs = self.model.encode(summaries)
scores = []
for i in range(len(summaries)):
score = pytorch_cos_sim(
src_embs[i].reshape(1, -1),
sum_embs[i].reshape(1, -1),
)[0, 0].item()
scores.append(score)
return scores
class CrossEncoderSimilarity:
def __init__(
self,
model_id="all-distilroberta-v1",
device="cuda",
weight=1
):
self.model = CrossEncoder(model_id, device=device)
self.weight = weight
def __call__(self, sources=None, summaries=None):
scores = self.model.predict([
(src, sum) for src, sum in zip(sources, summaries)
])
return scores.tolist()
class SelectedTokenSimilarity:
def __init__(
self,
model_id="all-distilroberta-v1",
device="cuda",
weight=1
):
self.model = SentenceTransformer(model_id).to(device)
self.weight = weight
self.tokenizer = model.tokenizer
def ids_to_tokens(self, ids):
return [self.tokenizer._convert_id_to_token(id) for id in ids]
def align_tokens(self, src, summary):
src_ids, sum_ids = self.tokenizer(
[src, summary],
truncation=True,
max_length=self.model.max_seq_length,
).input_ids
src_tokens = self.ids_to_tokens(src_ids)
sum_tokens = self.ids_to_tokens(sum_ids)
sum_to_src = defaultdict(list)
for i, sum_tok in enumerate(sum_tokens):
for j, src_tok in enumerate(src_tokens):
if sum_tok == src_tok:
sum_to_src[i].append(j)
if len(sum_to_src[i]) == 0:
sum_to_src[i] = None
return sum_to_src
def compute_score(self, x_sum, x_src, sum_to_src):
S = pytorch_cos_sim(x_sum, x_src).cpu().numpy()
scores = []
for i, J in sum_to_src.items():
if J is None:
i_score = 0.
else:
i_scores = [S[i, j] for j in J]
i_score = max(i_scores)
scores.append(i_score)
return np.mean(scores)
def __call__(self, sources=None, summaries=None):
src_embs = self.model.encode(sources, output_value="token_embeddings")
sum_embs = self.model.encode(summaries, output_value="token_embeddings")
scores = []
for i in range(len(summaries)):
x_src = src_embs[i]
x_sum = sum_embs[i]
sum_to_src = self.align_tokens(sources[i], summaries[i])
score = self.compute_score(x_sum, x_src, sum_to_src)
scores.append(score)
return scores
class NLIReward():
def __init__(
self,
model_id="cross-encoder/nli-distilroberta-base",
device="cuda",
weight=1
):
self.model = CrossEncoder(model_id, device)
self.label_mapping = ['contradiction', 'entailment', 'neutral']
self.weight = weight
def __call__(self, sources=None, summaries=None):
scores = self.model.predict([
(src, sum) for src, sum in zip(sources, summaries)
])
probs = torch.softmax(torch.tensor(scores), dim=1)
labels = [
self.label_mapping[score_max] for score_max in scores.argmax(axis=1)
]
rewards = [probs[i, 1].item() for i in range(len(summaries))]
rewards = [
(0 if summaries[i].strip()=="" else r)
for i, r in enumerate(rewards)
]
return rewards
class GaussianLength:
def __init__(self, mean=11, std=0.3, max_len=100, weight=1, device=None):
self.weight = weight
lens = np.arange(0, max_len + 1)
scores = gaussian(lens, mean, std)
scores /= scores.max()
self.len_to_reward = dict((l, scores[l]) for l in lens)
self.max_len = max_len
def __call__(self, sources=None, summaries=None):
lens = [len(word_tokenize(s)) for s in summaries]
scores = [
self.len_to_reward[l] if l <= self.max_len else 0.
for l in lens
]
return scores
class GaussianCR:
def __init__(self, mean=0.45, std=0.3, weight=1, device=None):
self.weight = weight
ratios = np.arange(0, 1.1, 0.01)
scores = gaussian(ratios, mean, std)
scores /= scores.max()
self.ratio_to_reward = dict((round(r, 3), s) for r, s in zip(ratios, scores))
def __call__(self, sources=None, summaries=None):
source_lens = [len(word_tokenize(s)) for s in sources]
summary_lens = [len(word_tokenize(s)) for s in summaries]
ratios = [round(x / y, 2) for x, y in zip(summary_lens, source_lens)]
ratios = [min(1., x) for x in ratios]
return [
self.ratio_to_reward[round(ratio, 2)]
for ratio in ratios
]
class NoDaysReward():
def __init__(self, weight=1, device=None):
self.day_words = [
"monday", "tuesday", "wednesday",
"thursday", "friday", "saturday", "sunday",
"today", "tomorrow", "yesterday", "tonight"
]
self.weight = weight
def __call__(self, sources=None, summaries=None):
scores = []
for s in summaries:
s = s.lower()
if any([w in s for w in self.day_words]):
score = 0.
else:
score = 1.
scores.append(score)
return scores
def gaussian(x, mu, sig):
return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.)))
class RougeReward:
def __init__(self, rouge_type="rougeL", weight=1, device=None):
self.rouge_type = rouge_type
self.weight = weight
self.targets = None
def __call__(self, sources=None, summaries=None):
scores = []
for pred, tgt in zip(summaries, self.targets):
rouge_scores = rouge_scorer.score(tgt, pred)
score = rouge_scores[self.rouge_type].fmeasure
scores.append(score)
return scores
#
|