Prompt-Compression-Toolbox / abs_compressor.py
JerryLiJinyi's picture
Upload 127 files
10b912d verified
raw
history blame
1.29 kB
from typing import List, Any
import tiktoken
class AbstractCompressor:
base_model = None
tokenizer = None
gpt_tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo-16k")
def compress(self, original_prompt: str, ratio: float) -> dict:
"""
Input original prompt/sentence and compression ratio, return compressed prompt/sentence.\
:param original_prompt:
:param ratio:
:return: dict object
"""
# output content including
# {
# 'compressed_prompt': compressed prompt,
# 'ratio': compression ratio,
# 'original_tokens': token count of original prompt,
# 'compressed_tokens': token count of compressed prompt
# }
raise NotImplementedError()
def fit(self, datas: List[dict], valid_size: int) -> None:
"""
For trainable methods, call this function for training parameters.
Require training LongBench and valid set size.
:param datas:
:param valid_size:
:return:
"""
raise NotImplementedError()
def set_model(self, model: Any, **kwargs):
"""
Specify a trained or a pre-trained model.
:param model:
:param kwargs:
:return:
"""
pass