JerryLiJinyi's picture
Upload 127 files
10b912d verified
raw
history blame
11.6 kB
import argparse
import shutil
import logging
import random
import time
from pprint import pprint
from collections import defaultdict
from pathlib import Path
from scrl.rewards import load_rewards
from scrl.data import load_data_for_training
from scrl.config import load_config
from scrl.model import load_model, LinearTokenSelector, labels_to_summary
import scrl.utils as utils
import scrl.sampling as sampling
import numpy as np
import torch
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoModel, AutoTokenizer
from sklearn import preprocessing
from nltk import word_tokenize
def print_if(x, do_print=True):
if do_print:
print(x)
class TrainingManager:
"""
Object for saving/loading model checkpoints and for tracking and saving
metrics measured during training, e.g. loss, rewards.
The following directory struture is build around one training run:
dir/
val_scores.json
checkpoints/
latest-model-500/
classifier.bin
encoder.bin
best-model-200/
[...]
series/
loss.npy
[...]
totals/
loss.npy
[...]
"""
def __init__(self, dir):
self.step = 0
self.total_seconds = 0
self.start_time = None
self.series = defaultdict(list)
self.totals = defaultdict(float)
self.dir = dir
dir.mkdir(exist_ok=True)
for subdir_name in ("checkpoints", "series", "totals"):
(dir / subdir_name).mkdir(exist_ok=True)
def start_clock(self):
self.start_time = time.time() - self.total_seconds
def load(self):
# load tracked data, e.g. loss, rewards etc.
for p in (self.dir / "series").iterdir():
k = p.name.split(".npy")[0]
self.series[k] = list(utils.load_numpy(p))
for p in (self.dir / "totals").iterdir():
k = p.name.split(".npy")[0]
self.totals[k] = utils.load_numpy(p)
# read latest training step
latest_model_dir = self.find_old_model("latest-model")
self.total_seconds = utils.read_json(self.dir / "time.json")["total_seconds"]
last_step = int(latest_model_dir.name.split("-")[-1])
self.step = last_step + 1
def update_metric(self, key, value):
self.totals[key] += value
self.series[key].append(value)
def mean_metric(self, key):
return self.totals[key] / (self.step + 1)
def save_latest_model(self, model, checkpoint_id):
self.save_model(model, checkpoint_id, prefix="latest-model")
def save_model(self, model, checkpoint_id, prefix):
old_model_dir = self.find_old_model(prefix)
model_dir = self.dir / "checkpoints" / f"{prefix}-{checkpoint_id}"
model_dir.mkdir()
model.save(
classifier_path = model_dir / "classifier.bin",
encoder_path = model_dir / "encoder.bin"
)
if old_model_dir:
shutil.rmtree(old_model_dir)
def find_old_model(self, prefix):
model_path = None
for p in (self.dir / "checkpoints").iterdir():
if p.name.startswith(f"{prefix}"):
model_path = p
return model_path
def is_empty(self):
latest_model_dir = self.find_old_model("latest-model")
return latest_model_dir is None
def save_data(self):
for k, v in self.series.items():
utils.save_numpy(v, self.dir / "series" / f"{k}.npy")
for k, v in self.totals.items():
utils.save_numpy(v, self.dir / "totals" / f"{k}.npy")
utils.write_json({
"step": self.step,
"total_seconds": self.total_seconds
}, self.dir / "time.json")
def label_variance(probs):
# batch, seq, 2
variances = []
for i in range(probs.size(0)):
distrib = probs[i, :, 0]
var = torch.var(distrib)
variances.append(var)
return var.mean().item()
def check_gradient(model):
is_zero = []
is_none = []
for name, param in list(model.named_parameters()):
if (param.requires_grad):
grad = param.grad
if grad is None:
is_none.append(name)
else:
gradsum = param.grad.sum().item()
if gradsum == 0:
is_zero.append(name)
print("zero-grad:", len(is_zero), is_zero)
print("none-grad:", len(is_none), is_none)
print()
def get_mean_max_prob(probs):
return probs.max(dim=2).values.mean().item()
def print_training_progress(args, manager, model, probs, argmax_summaries, sample_summaries, batch, argmax_details):
print(f"[step: {manager.step}] [duration(s): {round(manager.total_seconds)}]")
print(f"[example/s: {(args.batch_size * (manager.step + 1)) / manager.total_seconds:.3f}]")
print(f"[s/step: {manager.total_seconds / (manager.step+1):.3f}]")
print(f"[avg-loss: {manager.mean_metric('loss')}]")
print(f"[avg-max-prob: {manager.mean_metric('mean_max_prob'):.3f}]")
print(f"[avg-a-reward: {manager.mean_metric('argmax_reward'):.3f}]")
print(f"[avg-s-reward: {manager.mean_metric('sample_reward'):.3f}]")
print(f"[avg-len: {manager.mean_metric('argmax_len'):.1f}]")
print()
print(f"[a-reward: {manager.series['argmax_reward'][-1]:.3f}]")
print(f"[s-reward: {manager.series['sample_reward'][-1]:.3f}]")
print(f"[max-prob: {manager.series['mean_max_prob'][-1]:.3f}]")
print()
print("[sentences]")
print("\n".join(batch["document"]))
print("\n[current policy summaries]")
print("\n".join(argmax_summaries))
print("\n[sampled summaries]")
print("\n".join(sample_summaries))
print()
print("Reward Breakdown:")
pprint(argmax_details)
print()
check_gradient(model)
print("="*100)
def setup_model(args):
# setup/load model manager object
model_dir = Path(args.model_dir)
if args.fresh and model_dir.exists():
utils.ask_rmdir(model_dir)
manager = TrainingManager(model_dir)
if not manager.is_empty():
manager.load()
if not (model_dir / "config.json").exists():
shutil.copy(args.config, model_dir / "config.json")
# initialize new or load existing model
if manager.step == 0:
encoder = AutoModel.from_pretrained(args.encoder_model_id)
embedding_size = encoder.state_dict()["embeddings.word_embeddings.weight"].shape[1]
model = LinearTokenSelector(encoder, embedding_size).to(args.device)
else:
print("loading latest model from step", manager.step - 1)
model = load_model(
model_dir, prefix="latest", device=args.device
)
return manager, model
def setup_dataset_indices(args, step):
"""
Load pre-built indices that determine in which order we traverse a dataset.
If we continue interrupted training state, we move indices accordingly.
"""
dataset_indices = utils.batchify(
utils.load_numpy(args.indices),
args.batch_size
)
if step > 0:
utils.move_generator(dataset_indices, step)
return dataset_indices
def train(
args,
manager,
model,
tokenizer,
reward_generator,
dataset,
dataset_indices,
eval_func
):
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate)
n_train = len(dataset["train"])
device = args.device
model.train()
manager.start_clock()
for indices in dataset_indices:
step = manager.step
manager.total_seconds = time.time() - manager.start_time
if args.max_train_steps and step >= args.max_train_steps + 1:
break
if args.max_train_seconds and manager.total_seconds >= args.max_train_seconds:
break
optimizer.zero_grad()
batch = dataset["train"][indices]
input_ids = pad_sequence(
[torch.tensor(ids) for ids in batch["input_ids"]],
batch_first=True
).to(device)
logits = model(input_ids)
probs = torch.softmax(logits, dim=2)
argmax_labels = torch.argmax(logits, dim=2).to(device)
argmax_summaries = labels_to_summary(input_ids, argmax_labels, tokenizer)
argmax_rewards, argmax_details = reward_generator(batch["document"], argmax_summaries)
a_reward = np.mean(argmax_rewards)
(sample_probs, sample_summaries, sample_rewards, sample_details,
sample_labels, sample_data) = sampling.best_of_k_samples(
args, manager, tokenizer, reward_generator,
input_ids, batch, probs,
k_samples=args.k_samples,
)
s_reward = np.mean(sample_rewards)
if args.sample_aggregation == "max":
loss = (a_reward - s_reward) * sample_probs.sum(1).mean()
else:
loss = 0.
for sample_probs_i, s_rewards_i in zip(sample_data["probs"], sample_data["rewards"]):
s_reward_i = np.mean(s_rewards_i)
loss_i = (a_reward_i - s_reward_i) * sample_probs_i.sum(1).mean()
loss += loss_i
loss /= len(sample_data["rewards"])
if args.sample_aggregation == "mean" or a_reward != s_reward:
# not updating model if no reward difference, in case of single sample
loss.backward()
optimizer.step()
argmax_len = np.mean([len(word_tokenize(s)) for s in argmax_summaries])
manager.update_metric("time", time.time())
manager.update_metric("loss", loss.item())
manager.update_metric("argmax_reward", a_reward)
manager.update_metric("sample_reward", s_reward)
manager.update_metric("sample_prob", sample_probs.detach().cpu().numpy().mean())
manager.update_metric("mean_max_prob", get_mean_max_prob(probs))
manager.update_metric("label_variance", label_variance(probs))
manager.update_metric("argmax_len", argmax_len)
for rname, rvalues in argmax_details.items():
manager.update_metric(f"reward|{rname}", np.mean(rvalues))
if args.eval_every != None and (step > 0 and step % args.eval_every == 0):
eval_func(
args, manager, model, tokenizer, reward_generator,
dataset["validation"]
)
model.train()
if args.save_every != None and (step % args.save_every == 0):
manager.save_latest_model(model, step)
manager.save_data()
if args.print_every != None and (args.verbose and step % args.print_every == 0):
print_training_progress(
args, manager, model, probs,
argmax_summaries, sample_summaries, batch,
argmax_details
)
manager.step += 1
def setup_and_train(args, eval_func):
print_if("loading model", args.verbose)
manager, model = setup_model(args)
print_if("loading tokenizer", args.verbose)
tokenizer = AutoTokenizer.from_pretrained(args.encoder_model_id)
print_if("loading rewards", args.verbose)
reward_generator = load_rewards(args)
print_if("rewards:", reward_generator.reward_names)
print_if("loading dataset", args.verbose)
dataset = load_data_for_training(tokenizer, args.loader, args.dataset)
dataset_indices = setup_dataset_indices(args, manager.step)
train(
args,
manager,
model,
tokenizer,
reward_generator,
dataset,
dataset_indices,
eval_func
)