JerryLiJinyi's picture
Upload 127 files
10b912d verified
raw
history blame
1.8 kB
import numpy as np
import shutil
import json
import gzip
import random
import torch
class TransformersTokenizerWrapper:
def __init__(self, tokenizer):
self.T = tokenizer
def __call__(self, texts):
token_ids_batch = self.T(texts)["input_ids"]
tokens_batch = [[self.T._convert_id_to_token(id) for id in ids] for ids in token_ids_batch]
tokens_batch = [[self.T.convert_tokens_to_string(t).strip() for t in tokens[1:-1]] for tokens in tokens_batch]
return tokens_batch
def set_random_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
def ask_rmdir(dir):
val = input(
f"WARNING: Proceed with deleting this directory: {dir} ? (yes|no) "
)
if val == "yes":
shutil.rmtree(dir)
def load_numpy(path):
with open(path, "rb") as f:
x = np.load(f)
return x
def save_numpy(x, path):
with open(path, "wb") as f:
np.save(f, x)
def batchify(items, batch_size):
for i in range(0, len(items), batch_size):
yield items[i:i + batch_size]
def move_generator(items, idx):
if idx == 0:
return
else:
for i, x in enumerate(items):
if i >= idx - 1:
break
def read_json(path):
with open(path) as f:
obj = json.load(f)
return obj
def write_json(obj, path):
with open(path, 'w') as f:
json.dump(obj, f)
def write_jsonl(items, path, mode):
with open(path, mode) as f:
lines = [json.dumps(x) for x in items]
f.write("\n".join(lines) + "\n")
def read_jsonl(path):
with open(path) as f:
for line in f:
yield json.loads(line)
def read_jsonl_gz(path):
with gzip.open(path) as f:
for l in f:
yield json.loads(l)