JerryLiJinyi's picture
Upload 127 files
10b912d verified
import argparse
import numpy as np
from pathlib import Path
import tqdm
from pprint import pprint
import torch
from torch.nn.utils.rnn import pad_sequence
from scrl.config import load_config
from scrl.training import setup_and_train
from scrl.model import labels_to_summary
from scrl.eval_metrics import compute_token_f1
import scrl.utils as utils
from nltk import word_tokenize
def evaluate_validation_reward(args, manager, model, tokenizer, reward_generator, dataset):
device = args.device
idx_range = list(range(len(dataset)))
dataset_indices = list(utils.batchify(idx_range, args.batch_size))
rewards = []
for i, indices in enumerate(dataset_indices):
if args.max_val_steps != None and i >= args.max_val_steps:
break
batch = dataset[indices]
input_ids = batch["input_ids"]
input_ids = pad_sequence(
[torch.tensor(ids) for ids in input_ids], batch_first=True
)
logits = model(input_ids.to(device))
probs = torch.softmax(logits, dim=2)
argmax_labels = torch.argmax(logits, dim=2).to(device)
argmax_summaries = labels_to_summary(input_ids, argmax_labels, tokenizer)
argmax_rewards, _ = reward_generator(batch["document"], argmax_summaries)
rewards += argmax_rewards
avg_reward = np.mean(rewards)
return avg_reward
def evaluate_validation_dataset(args, manager, model, tokenizer, reward_generator, dataset_path):
f1_scores = []
dataset = list(utils.read_jsonl(dataset_path))
dump_data = []
for item in tqdm.tqdm(dataset):
src = item["text"]
tgts = item["summaries"]
input_ids = torch.tensor(tokenizer([src])["input_ids"]).to(args.device)
logits = model.forward(input_ids)
argmax_labels = torch.argmax(logits, dim=2)
pred = labels_to_summary(input_ids, argmax_labels, tokenizer)[0]
pred_tokens = word_tokenize(pred)
src_tokens = word_tokenize(src)
item_scores = []
for tgt in tgts:
tgt_tokens = word_tokenize(tgt)
pred_tokens = [t.lower() for t in pred_tokens]
tgt_tokens = [t.lower() for t in tgt_tokens]
token_f1 = compute_token_f1(
tgt_tokens, pred_tokens, use_counts=True
)
item_scores.append(token_f1)
if args.dump:
probs = torch.softmax(logits, dim=2)[0].detach().tolist()
dump_item = {
"probs": probs,
"source": src,
"target": tgts[0],
"f1-score": item_scores[0],
"pred_summary": pred,
"pred_labels": argmax_labels[0].tolist(),
}
dump_data.append(dump_item)
item_score = np.mean(item_scores)
f1_scores.append(item_score)
score = np.mean(f1_scores)
if args.dump:
dataset_name = dataset_path.name.split(".jsonl")[0]
dump_dir = manager.dir / f"dump-{dataset_name}"
dump_dir.mkdir(exist_ok=True)
utils.write_jsonl(
dump_data,
dump_dir / f"step-{manager.step}.jsonl",
"w"
)
return score
def evaluate(args, manager, model, tokenizer, reward_generator, holdout_data):
step = manager.step
val_reward = evaluate_validation_reward(args, manager, model, tokenizer, reward_generator, holdout_data)
reward_path = manager.dir / "val_rewards.jsonl"
if reward_path.exists():
reward_results = list(utils.read_jsonl(reward_path))
prev_max = max([x["score"] for x in reward_results])
else:
reward_results = []
prev_max = 0
if val_reward > prev_max:
manager.save_model(model, step, "best_val_reward")
reward_results.append({"step": step, "score": val_reward})
utils.write_jsonl(reward_results, reward_path, "w")
if args.verbose:
print("Validation Rewards:")
pprint(reward_results)
print()
# only used if a validation dataset is specified in config
for val_data_path in args.validation_datasets:
val_data_path = Path(val_data_path)
dataset_name = val_data_path.name.split(".jsonl")[0]
dataset_score = evaluate_validation_dataset(
args, manager, model, tokenizer, reward_generator, val_data_path
)
result_path = Path(manager.dir / f"val_data_results.{dataset_name}.jsonl")
if result_path.exists():
dataset_results = list(utils.read_jsonl(result_path))
prev_max = max([x["score"] for x in dataset_results])
else:
dataset_results = []
prev_max = 0
if dataset_score > prev_max:
manager.save_model(model, step, f"best_on_{dataset_name}")
dataset_results.append({"step": step, "score": dataset_score})
utils.write_jsonl(dataset_results, result_path, "w")
if args.verbose:
print(f"Validation Dataset Results for {dataset_name}:")
pprint(dataset_results)
print()
def main(args):
utils.set_random_seed(0)
setup_and_train(args, eval_func=evaluate)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--config", help="path to JSON config file")
parser.add_argument("--device", default="cuda")
parser.add_argument("--dump", action="store_true")
parser.add_argument("--verbose", action="store_true")
parser.add_argument(
"--fresh",
action="store_true",
help="delete model directory and start from scratch"
)
main(load_config(parser.parse_args()))