File size: 33,539 Bytes
cd1c110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f038dc5
cd1c110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00c78cc
cd1c110
 
 
 
 
 
 
 
 
 
 
00c78cc
cd1c110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f90dd
 
cd1c110
 
 
 
a4f90dd
cd1c110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41bac92
cd1c110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4039be6
cd1c110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7d9e98
f038dc5
cd1c110
 
 
 
 
 
 
 
 
f038dc5
 
 
 
 
 
 
 
cd1c110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00c78cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
import os
os.environ["GIT_CLONE_PROTECTION_ACTIVE"] = "false"
from pathlib import Path
import requests
import shutil
import io
from pathlib import Path
import openvino as ov
import torch
from transformers import (
    TextIteratorStreamer,
    StoppingCriteria,
    StoppingCriteriaList,
)
from llm_config import (
    SUPPORTED_EMBEDDING_MODELS,
    SUPPORTED_RERANK_MODELS,
    SUPPORTED_LLM_MODELS,
)
from huggingface_hub import login


config_shared_path = Path("../../utils/llm_config.py")
config_dst_path = Path("llm_config.py")
text_example_en_path = Path("text_example_en.pdf")
text_example_cn_path = Path("text_example_cn.pdf")
text_example_en = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039728/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final.pdf"
text_example_cn = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039713/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final_CH.pdf"

if not config_dst_path.exists():
    if config_shared_path.exists():
        try:
            os.symlink(config_shared_path, config_dst_path)
        except Exception:
            shutil.copy(config_shared_path, config_dst_path)
    else:
        r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py")
        with open("llm_config.py", "w", encoding="utf-8") as f:
            f.write(r.text)
elif not os.path.islink(config_dst_path):
    print("LLM config will be updated")
    if config_shared_path.exists():
        shutil.copy(config_shared_path, config_dst_path)
    else:
        r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py")
        with open("llm_config.py", "w", encoding="utf-8") as f:
            f.write(r.text)


if not text_example_en_path.exists():
    r = requests.get(url=text_example_en)
    content = io.BytesIO(r.content)
    with open("text_example_en.pdf", "wb") as f:
        f.write(content.read())

if not text_example_cn_path.exists():
    r = requests.get(url=text_example_cn)
    content = io.BytesIO(r.content)
    with open("text_example_cn.pdf", "wb") as f:
        f.write(content.read())

model_language = "English"
llm_model_id = "llama-3-8b-instruct"                                                #"llama-3.2-3b-instruct"                          #"llama-3-8b-instruct"
llm_model_configuration = SUPPORTED_LLM_MODELS[model_language][llm_model_id]
print(f"Selected LLM model {llm_model_id}")
prepare_int4_model = True   # Prepare INT4 model
prepare_int8_model = False  # Do not prepare INT8 model
prepare_fp16_model = False  # Do not prepare FP16 model
enable_awq = False
# Get the token from the environment variable
hf_token = os.getenv("HUGGINGFACE_TOKEN")

if hf_token is None:
    raise ValueError(
        "HUGGINGFACE_TOKEN environment variable not set. "
        "Please set it in your environment variables or repository secrets."
    )

# Log in to Hugging Face Hub
login(token=hf_token)
pt_model_id = llm_model_configuration["model_id"]
# pt_model_name = llm_model_id.value.split("-")[0]
fp16_model_dir = Path(llm_model_id) / "FP16"
int8_model_dir = Path(llm_model_id) / "INT8_compressed_weights"
int4_model_dir = Path(llm_model_id) / "INT4_compressed_weights"


def convert_to_fp16():
    if (fp16_model_dir / "openvino_model.xml").exists():
        return
    remote_code = llm_model_configuration.get("remote_code", False)
    export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format fp16".format(pt_model_id)
    if remote_code:
        export_command_base += " --trust-remote-code"
    export_command = export_command_base + " " + str(fp16_model_dir)



def convert_to_int8():
    if (int8_model_dir / "openvino_model.xml").exists():
        return
    int8_model_dir.mkdir(parents=True, exist_ok=True)
    remote_code = llm_model_configuration.get("remote_code", False)
    export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int8".format(pt_model_id)
    if remote_code:
        export_command_base += " --trust-remote-code"
    export_command = export_command_base + " " + str(int8_model_dir)



def convert_to_int4():
    compression_configs = {
        "zephyr-7b-beta": {
            "sym": True,
            "group_size": 64,
            "ratio": 0.6,
        },
        "mistral-7b": {
            "sym": True,
            "group_size": 64,
            "ratio": 0.6,
        },
        "minicpm-2b-dpo": {
            "sym": True,
            "group_size": 64,
            "ratio": 0.6,
        },
        "gemma-2b-it": {
            "sym": True,
            "group_size": 64,
            "ratio": 0.6,
        },
        "notus-7b-v1": {
            "sym": True,
            "group_size": 64,
            "ratio": 0.6,
        },
        "neural-chat-7b-v3-1": {
            "sym": True,
            "group_size": 64,
            "ratio": 0.6,
        },
        "llama-2-chat-7b": {
            "sym": True,
            "group_size": 128,
            "ratio": 0.8,
        },
        "llama-3-8b-instruct": {
            "sym": True,
            "group_size": 128,
            "ratio": 0.8,
        },
        "gemma-7b-it": {
            "sym": True,
            "group_size": 128,
            "ratio": 0.8,
        },
        "chatglm2-6b": {
            "sym": True,
            "group_size": 128,
            "ratio": 0.72,
        },
        "qwen-7b-chat": {"sym": True, "group_size": 128, "ratio": 0.6},
        "red-pajama-3b-chat": {
            "sym": False,
            "group_size": 128,
            "ratio": 0.5,
        },
        "default": {
            "sym": False,
            "group_size": 128,
            "ratio": 0.8,
        },
    }

    model_compression_params = compression_configs.get(llm_model_id, compression_configs["default"])
    if (int4_model_dir / "openvino_model.xml").exists():
        return
    remote_code = llm_model_configuration.get("remote_code", False)
    export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int4".format(pt_model_id)
    int4_compression_args = " --group-size {} --ratio {}".format(model_compression_params["group_size"], model_compression_params["ratio"])
    if model_compression_params["sym"]:
        int4_compression_args += " --sym"
    print("updated")
    if enable_awq:
        int4_compression_args += " --awq --dataset wikitext2 --num-samples 128"
    export_command_base += int4_compression_args
    if remote_code:
        export_command_base += " --trust-remote-code"
    # export_command = export_command_base + " " + str(int4_model_dir)



if prepare_fp16_model:
    convert_to_fp16()
if prepare_int8_model:
    convert_to_int8()
if prepare_int4_model:
    convert_to_int4()
fp16_weights = fp16_model_dir / "openvino_model.bin"
int8_weights = int8_model_dir / "openvino_model.bin"
int4_weights = int4_model_dir / "openvino_model.bin"

if fp16_weights.exists():
    print(f"Size of FP16 model is {fp16_weights.stat().st_size / 1024 / 1024:.2f} MB")
for precision, compressed_weights in zip([8, 4], [int8_weights, int4_weights]):
    if compressed_weights.exists():
        print(f"Size of model with INT{precision} compressed weights is {compressed_weights.stat().st_size / 1024 / 1024:.2f} MB")
    if compressed_weights.exists() and fp16_weights.exists():
        print(f"Compression rate for INT{precision} model: {fp16_weights.stat().st_size / compressed_weights.stat().st_size:.3f}")
embedding_model_id = 'bge-small-en-v1.5'                  #'bge-small-en-v1.5', 'bge-large-en-v1.5', 'bge-m3'), value='bge-small-en-v1.5'
embedding_model_configuration = SUPPORTED_EMBEDDING_MODELS[model_language][embedding_model_id]
print(f"Selected {embedding_model_id} model")
export_command_base = "optimum-cli export openvino --model {} --task feature-extraction".format(embedding_model_configuration["model_id"])
export_command = export_command_base + " " + str(embedding_model_id)
rerank_model_id = "bge-reranker-v2-m3"                               #'bge-reranker-v2-m3', 'bge-reranker-large', 'bge-reranker-base')
rerank_model_configuration = SUPPORTED_RERANK_MODELS[rerank_model_id]
print(f"Selected {rerank_model_id} model")
export_command_base = "optimum-cli export openvino --model {} --task text-classification".format(rerank_model_configuration["model_id"])
export_command = export_command_base + " " + str(rerank_model_id)
embedding_device = "CPU"
USING_NPU = embedding_device == "NPU"

npu_embedding_dir = embedding_model_id + "-npu"
npu_embedding_path = Path(npu_embedding_dir) / "openvino_model.xml"
if USING_NPU and not Path(npu_embedding_dir).exists():
    r = requests.get(
        url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
    )
    with open("notebook_utils.py", "w") as f:
        f.write(r.text)
    import notebook_utils as utils

    shutil.copytree(embedding_model_id, npu_embedding_dir)
    utils.optimize_bge_embedding(Path(embedding_model_id) / "openvino_model.xml", npu_embedding_path)
rerank_device = "CPU"
llm_device = "CPU"
from langchain_community.embeddings import OpenVINOBgeEmbeddings

embedding_model_name = npu_embedding_dir if USING_NPU else embedding_model_id
batch_size = 1 if USING_NPU else 4
embedding_model_kwargs = {"device": embedding_device, "compile": False}
encode_kwargs = {
    "mean_pooling": embedding_model_configuration["mean_pooling"],
    "normalize_embeddings": embedding_model_configuration["normalize_embeddings"],
    "batch_size": batch_size,
}

embedding = OpenVINOBgeEmbeddings(
    model_name_or_path="BAAI/bge-small-en-v1.5",
    model_kwargs=embedding_model_kwargs,
    encode_kwargs=encode_kwargs,
)
if USING_NPU:
    embedding.ov_model.reshape(1, 512)
embedding.ov_model.compile()

text = "This is a test document."
embedding_result = embedding.embed_query(text)
embedding_result[:3]
from langchain_community.document_compressors.openvino_rerank import OpenVINOReranker

rerank_model_name = rerank_model_id
rerank_model_kwargs = {"device": rerank_device}
rerank_top_n = 2

reranker = OpenVINOReranker(
    model_name_or_path="BAAI/bge-reranker-v2-m3",
    model_kwargs=rerank_model_kwargs,
    top_n=rerank_top_n,
)
model_to_run = "INT4"
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline

if model_to_run == "INT4":
    model_dir = int4_model_dir
elif model_to_run == "INT8":
    model_dir = int8_model_dir
else:
    model_dir = fp16_model_dir
print(f"Loading model from {model_dir}")

ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}

if "GPU" in llm_device and "qwen2-7b-instruct" in llm_model_id:
    ov_config["GPU_ENABLE_SDPA_OPTIMIZATION"] = "NO"

# On a GPU device a model is executed in FP16 precision. For red-pajama-3b-chat model there known accuracy
# issues caused by this, which we avoid by setting precision hint to "f32".
if llm_model_id == "red-pajama-3b-chat" and "GPU" in core.available_devices and llm_device in ["GPU", "AUTO"]:
    ov_config["INFERENCE_PRECISION_HINT"] = "f32"

llm = HuggingFacePipeline.from_model_id(
    model_id= "meta-llama/Meta-Llama-3-8B",                                                                        
    #meta-llama/Meta-Llama-3-8B------------/meta-llama/Llama-3.2-3B-Instruct   
    task="text-generation",
    backend="openvino",
    model_kwargs={
        "device": llm_device,
        "ov_config": ov_config,
        "trust_remote_code": True,
    },
    pipeline_kwargs={"max_new_tokens": 2},
)
# # 设置 pad_token_id 为 eos_token_id
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-3.2-3B-Instruct')
# if tokenizer.pad_token_id is None:
#     tokenizer.pad_token_id = tokenizer.eos_token_id
# # # 同时确保 HuggingFacePipeline 使用的 tokenizer 也设置了 pad_token_id
# llm.pipeline.tokenizer.pad_token_id = tokenizer.pad_token_id
llm.invoke("2 + 2 =")
import re
from typing import List
from langchain.text_splitter import (
    CharacterTextSplitter,
    RecursiveCharacterTextSplitter,
    MarkdownTextSplitter,
)
from langchain.document_loaders import (
    CSVLoader,
    EverNoteLoader,
    PyPDFLoader,
    TextLoader,
    UnstructuredEPubLoader,
    UnstructuredHTMLLoader,
    UnstructuredMarkdownLoader,
    UnstructuredODTLoader,
    UnstructuredPowerPointLoader,
    UnstructuredWordDocumentLoader,
)


class ChineseTextSplitter(CharacterTextSplitter):
    def __init__(self, pdf: bool = False, **kwargs):
        super().__init__(**kwargs)
        self.pdf = pdf

    def split_text(self, text: str) -> List[str]:
        if self.pdf:
            text = re.sub(r"\n{3,}", "\n", text)
            text = text.replace("\n\n", "")
        sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))')
        sent_list = []
        for ele in sent_sep_pattern.split(text):
            if sent_sep_pattern.match(ele) and sent_list:
                sent_list[-1] += ele
            elif ele:
                sent_list.append(ele)
        return sent_list


TEXT_SPLITERS = {
    "Character": CharacterTextSplitter,
    "RecursiveCharacter": RecursiveCharacterTextSplitter,
    "Markdown": MarkdownTextSplitter,
    "Chinese": ChineseTextSplitter,
}


LOADERS = {
    ".csv": (CSVLoader, {}),
    ".doc": (UnstructuredWordDocumentLoader, {}),
    ".docx": (UnstructuredWordDocumentLoader, {}),
    ".enex": (EverNoteLoader, {}),
    ".epub": (UnstructuredEPubLoader, {}),
    ".html": (UnstructuredHTMLLoader, {}),
    ".md": (UnstructuredMarkdownLoader, {}),
    ".odt": (UnstructuredODTLoader, {}),
    ".pdf": (PyPDFLoader, {}),
    ".ppt": (UnstructuredPowerPointLoader, {}),
    ".pptx": (UnstructuredPowerPointLoader, {}),
    ".txt": (TextLoader, {"encoding": "utf8"}),
}

chinese_examples = [
    ["英特尔®酷睿™ Ultra处理器可以降低多少功耗?"],
    ["相比英特尔之前的移动处理器产品,英特尔®酷睿™ Ultra处理器的AI推理性能提升了多少?"],
    ["英特尔博锐® Enterprise系统提供哪些功能?"],
]

english_examples = [
    ["How much power consumption can Intel® Core™ Ultra Processors help save?"],
    ["Compared to Intel’s previous mobile processor, what is the advantage of Intel® Core™ Ultra Processors for Artificial Intelligence?"],
    ["What can Intel vPro® Enterprise systems offer?"],
]

if model_language == "English":
    # text_example_path = "text_example_en.pdf"
    text_example_path = ['Supervisors-Guide-Accurate-Timekeeping_AH edits.docx','Salary-vs-Hourly-Guide_AH edits.docx','Employee-Guide-Accurate-Timekeeping_AH edits.docx','Eller Overtime Guidelines.docx','Eller FLSA information 9.2024_AH edits.docx','Accurate Timekeeping Supervisors 12.2.20_AH edits.docx']
else:
    text_example_path = "text_example_cn.pdf"

examples = chinese_examples if (model_language == "Chinese") else english_examples
from langchain.prompts import PromptTemplate
from langchain_community.vectorstores import FAISS
from langchain.chains.retrieval import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.docstore.document import Document
from langchain.retrievers import ContextualCompressionRetriever
from threading import Thread
import gradio as gr

stop_tokens = llm_model_configuration.get("stop_tokens")
rag_prompt_template = llm_model_configuration["rag_prompt_template"]


class StopOnTokens(StoppingCriteria):
    def __init__(self, token_ids):
        self.token_ids = token_ids

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        for stop_id in self.token_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False


if stop_tokens is not None:
    if isinstance(stop_tokens[0], str):
        stop_tokens = llm.pipeline.tokenizer.convert_tokens_to_ids(stop_tokens)

    stop_tokens = [StopOnTokens(stop_tokens)]


def load_single_document(file_path: str) -> List[Document]:
    """
    helper for loading a single document

    Params:
      file_path: document path
    Returns:
      documents loaded

    """
    ext = "." + file_path.rsplit(".", 1)[-1]
    if ext in LOADERS:
        loader_class, loader_args = LOADERS[ext]
        loader = loader_class(file_path, **loader_args)
        return loader.load()

    raise ValueError(f"File does not exist '{ext}'")


def default_partial_text_processor(partial_text: str, new_text: str):
    """
    helper for updating partially generated answer, used by default

    Params:
      partial_text: text buffer for storing previosly generated text
      new_text: text update for the current step
    Returns:
      updated text string

    """
    partial_text += new_text
    return partial_text


text_processor = llm_model_configuration.get("partial_text_processor", default_partial_text_processor)


def create_vectordb(
    docs, spliter_name, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold, progress=gr.Progress()
):
    """
    Initialize a vector database

    Params:
      doc: orignal documents provided by user
      spliter_name: spliter method
      chunk_size:  size of a single sentence chunk
      chunk_overlap: overlap size between 2 chunks
      vector_search_top_k: Vector search top k
      vector_rerank_top_n: Search rerank top n
      run_rerank: whether run reranker
      search_method: top k search method
      score_threshold: score threshold when selecting 'similarity_score_threshold' method

    """
    global db
    global retriever
    global combine_docs_chain
    global rag_chain

    if vector_rerank_top_n > vector_search_top_k:
        gr.Warning("Search top k must >= Rerank top n")

    documents = []
    for doc in docs:
        if type(doc) is not str:
            doc = doc.name
        documents.extend(load_single_document(doc))

    text_splitter = TEXT_SPLITERS[spliter_name](chunk_size=chunk_size, chunk_overlap=chunk_overlap)

    texts = text_splitter.split_documents(documents)
    db = FAISS.from_documents(texts, embedding)
    if search_method == "similarity_score_threshold":
        search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold}
    else:
        search_kwargs = {"k": vector_search_top_k}
    retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method)
    if run_rerank:
        reranker.top_n = vector_rerank_top_n
        retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever)
    prompt = PromptTemplate.from_template(rag_prompt_template)
    combine_docs_chain = create_stuff_documents_chain(llm, prompt)

    rag_chain = create_retrieval_chain(retriever, combine_docs_chain)

    return "Vector database is Ready"


def update_retriever(vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold):
    """
    Update retriever

    Params:
      vector_search_top_k: Vector search top k
      vector_rerank_top_n: Search rerank top n
      run_rerank: whether run reranker
      search_method: top k search method
      score_threshold: score threshold when selecting 'similarity_score_threshold' method

    """
    global db
    global retriever
    global combine_docs_chain
    global rag_chain

    if vector_rerank_top_n > vector_search_top_k:
        gr.Warning("Search top k must >= Rerank top n")

    if search_method == "similarity_score_threshold":
        search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold}
    else:
        search_kwargs = {"k": vector_search_top_k}
    retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method)
    if run_rerank:
        retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever)
        reranker.top_n = vector_rerank_top_n
    rag_chain = create_retrieval_chain(retriever, combine_docs_chain)

    return "Vector database is Ready"


def user(message, history):
    """
    callback function for updating user messages in interface on submit button click

    Params:
      message: current message
      history: conversation history
    Returns:
      None
    """
    # Append the user's message to the conversation history
    return "", history + [[message, ""]]


def bot(history, temperature, top_p, top_k, repetition_penalty, hide_full_prompt, do_rag):
    """
    callback function for running chatbot on submit button click

    Params:
      history: conversation history
      temperature:  parameter for control the level of creativity in AI-generated text.
                    By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse.
      top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability.
      top_k: parameter for control the range of tokens considered by the AI model based on their cumulative probability, selecting number of tokens with highest probability.
      repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text.
      hide_full_prompt: whether to show searching results in promopt.
      do_rag: whether do RAG when generating texts.

    """
    streamer = TextIteratorStreamer(
        llm.pipeline.tokenizer,
        timeout=60.0,
        skip_prompt=hide_full_prompt,
        skip_special_tokens=True,
    )
    llm.pipeline._forward_params = dict(
        max_new_tokens=512,
        temperature=temperature,
        do_sample=temperature > 0.0,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        streamer=streamer,
    )
    if stop_tokens is not None:
        llm.pipeline._forward_params["stopping_criteria"] = StoppingCriteriaList(stop_tokens)

    if do_rag:
        t1 = Thread(target=rag_chain.invoke, args=({"input": history[-1][0]},))
    else:
        input_text = rag_prompt_template.format(input=history[-1][0], context="")
        t1 = Thread(target=llm.invoke, args=(input_text,))
    t1.start()

    # Initialize an empty string to store the generated text
    partial_text = ""
    for new_text in streamer:
        partial_text = text_processor(partial_text, new_text)
        history[-1][1] = partial_text
        yield history


def request_cancel():
    llm.pipeline.model.request.cancel()


def clear_files():
    return "Vector Store is Not ready"


# initialize the vector store with example document
create_vectordb(
    text_example_path,  #changed
    "RecursiveCharacter",
    chunk_size=400,
    chunk_overlap=50,
    vector_search_top_k=10,
    vector_rerank_top_n=2,
    run_rerank=True,
    search_method="similarity_score_threshold",
    score_threshold=0.5,
)
with gr.Blocks(
    theme=gr.themes.Soft(),
    css=".disclaimer {font-variant-caps: all-small-caps;}",
) as demo:
    gr.Markdown("""<h1><center>QA over Document</center></h1>""")
    gr.Markdown(f"""<center>Powered by OpenVINO and {llm_model_id} </center>""")
    with gr.Row():
        with gr.Column(scale=1):
            docs = gr.File(
                label="Step 1: Load text files",
                value=text_example_path,    #changed
                file_count="multiple",
                file_types=[
                    ".csv",
                    ".doc",
                    ".docx",
                    ".enex",
                    ".epub",
                    ".html",
                    ".md",
                    ".odt",
                    ".pdf",
                    ".ppt",
                    ".pptx",
                    ".txt",
                ],
            )
            load_docs = gr.Button("Step 2: Build Vector Store", variant="primary")
            db_argument = gr.Accordion("Vector Store Configuration", open=False)
            with db_argument:
                spliter = gr.Dropdown(
                    ["Character", "RecursiveCharacter", "Markdown", "Chinese"],
                    value="RecursiveCharacter",
                    label="Text Spliter",
                    info="Method used to splite the documents",
                    multiselect=False,
                )

                chunk_size = gr.Slider(
                    label="Chunk size",
                    value=400,
                    minimum=50,
                    maximum=2000,
                    step=50,
                    interactive=True,
                    info="Size of sentence chunk",
                )

                chunk_overlap = gr.Slider(
                    label="Chunk overlap",
                    value=50,
                    minimum=0,
                    maximum=400,
                    step=10,
                    interactive=True,
                    info=("Overlap between 2 chunks"),
                )

            langchain_status = gr.Textbox(
                label="Vector Store Status",
                value="Vector Store is Ready",
                interactive=False,
            )
            do_rag = gr.Checkbox(
                value=True,
                label="RAG is ON",
                interactive=True,
                info="Whether to do RAG for generation",
            )
            with gr.Accordion("Generation Configuration", open=False):
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            temperature = gr.Slider(
                                label="Temperature",
                                value=0.1,
                                minimum=0.0,
                                maximum=1.0,
                                step=0.1,
                                interactive=True,
                                info="Higher values produce more diverse outputs",
                            )
                    with gr.Column():
                        with gr.Row():
                            top_p = gr.Slider(
                                label="Top-p (nucleus sampling)",
                                value=1.0,
                                minimum=0.0,
                                maximum=1,
                                step=0.01,
                                interactive=True,
                                info=(
                                    "Sample from the smallest possible set of tokens whose cumulative probability "
                                    "exceeds top_p. Set to 1 to disable and sample from all tokens."
                                ),
                            )
                    with gr.Column():
                        with gr.Row():
                            top_k = gr.Slider(
                                label="Top-k",
                                value=50,
                                minimum=0.0,
                                maximum=200,
                                step=1,
                                interactive=True,
                                info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.",
                            )
                    with gr.Column():
                        with gr.Row():
                            repetition_penalty = gr.Slider(
                                label="Repetition Penalty",
                                value=1.1,
                                minimum=1.0,
                                maximum=2.0,
                                step=0.1,
                                interactive=True,
                                info="Penalize repetition — 1.0 to disable.",
                            )
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(
                height=800,
                label="Step 3: Input Query",
            )
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        msg = gr.Textbox(
                            label="QA Message Box",
                            placeholder="Chat Message Box",
                            show_label=False,
                            container=False,
                        )
                with gr.Column():
                    with gr.Row():
                        submit = gr.Button("Submit", variant="primary")
                        stop = gr.Button("Stop")
                        clear = gr.Button("Clear")
            gr.Examples(examples, inputs=msg, label="Click on any example and press the 'Submit' button")
            retriever_argument = gr.Accordion("Retriever Configuration", open=True)
            with retriever_argument:
                with gr.Row():
                    with gr.Row():
                        do_rerank = gr.Checkbox(
                            value=True,
                            label="Rerank searching result",
                            interactive=True,
                        )
                        hide_context = gr.Checkbox(
                            value=True,
                            label="Hide searching result in prompt",
                            interactive=True,
                        )
                    with gr.Row():
                        search_method = gr.Dropdown(
                            ["similarity_score_threshold", "similarity", "mmr"],
                            value="similarity_score_threshold",
                            label="Searching Method",
                            info="Method used to search vector store",
                            multiselect=False,
                            interactive=True,
                        )
                    with gr.Row():
                        score_threshold = gr.Slider(
                            0.01,
                            0.99,
                            value=0.5,
                            step=0.01,
                            label="Similarity Threshold",
                            info="Only working for 'similarity score threshold' method",
                            interactive=True,
                        )
                    with gr.Row():
                        vector_rerank_top_n = gr.Slider(
                            1,
                            10,
                            value=2,
                            step=1,
                            label="Rerank top n",
                            info="Number of rerank results",
                            interactive=True,
                        )
                    with gr.Row():
                        vector_search_top_k = gr.Slider(
                            1,
                            50,
                            value=10,
                            step=1,
                            label="Search top k",
                            info="Search top k must >= Rerank top n",
                            interactive=True,
                        )
    docs.clear(clear_files, outputs=[langchain_status], queue=False)
    load_docs.click(
        create_vectordb,
        inputs=[docs, spliter, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
        outputs=[langchain_status],
        queue=False,
    )
    submit_event = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot,
        [chatbot, temperature, top_p, top_k, repetition_penalty, hide_context, do_rag],
        chatbot,
        queue=True,
    )
    submit_click_event = submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot,
        [chatbot, temperature, top_p, top_k, repetition_penalty, hide_context, do_rag],
        chatbot,
        queue=True,
    )
    stop.click(
        fn=request_cancel,
        inputs=None,
        outputs=None,
        cancels=[submit_event, submit_click_event],
        queue=False,
    )
    clear.click(lambda: None, None, chatbot, queue=False)
    vector_search_top_k.release(
        update_retriever,
        [vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
        outputs=[langchain_status],
    )
    vector_rerank_top_n.release(
        update_retriever,
        inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
        outputs=[langchain_status],
    )
    do_rerank.change(
        update_retriever,
        inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
        outputs=[langchain_status],
    )
    search_method.change(
        update_retriever,
        inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
        outputs=[langchain_status],
    )
    score_threshold.change(
        update_retriever,
        inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
        outputs=[langchain_status],
    )


demo.queue()
# if you are launching remotely, specify server_name and server_port
# demo.launch(server_port=8082)
# if you have any issue to launch on your platform, you can pass share=True to launch method:
demo.launch(share=True)
# it creates a publicly shareable link for the interface. Read more in the docs: https://gradio.app/docs/
# demo.launch()