File size: 33,832 Bytes
cd1c110 f038dc5 cd1c110 00c78cc cd1c110 00c78cc cd1c110 a4f90dd cd1c110 a4f90dd cd1c110 41bac92 cd1c110 06ab889 cd1c110 4039be6 cd1c110 b18fb8c 5df3113 de9204e 5df3113 df0b1a0 5df3113 df0b1a0 f39ac79 5df3113 df0b1a0 5df3113 df0b1a0 5df3113 f39ac79 df0b1a0 cd1c110 6ccaa71 e9afb05 cbcb9b9 cd1c110 831a5e8 6ccaa71 831a5e8 e9afb05 cbcb9b9 6ccaa71 cd1c110 6ccaa71 cd1c110 bc65495 cd1c110 00c78cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
import os
os.environ["GIT_CLONE_PROTECTION_ACTIVE"] = "false"
from pathlib import Path
import requests
import shutil
import io
from pathlib import Path
import openvino as ov
import torch
from transformers import (
TextIteratorStreamer,
StoppingCriteria,
StoppingCriteriaList,
)
from llm_config import (
SUPPORTED_EMBEDDING_MODELS,
SUPPORTED_RERANK_MODELS,
SUPPORTED_LLM_MODELS,
)
from huggingface_hub import login
config_shared_path = Path("../../utils/llm_config.py")
config_dst_path = Path("llm_config.py")
text_example_en_path = Path("text_example_en.pdf")
text_example_cn_path = Path("text_example_cn.pdf")
text_example_en = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039728/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final.pdf"
text_example_cn = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039713/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final_CH.pdf"
if not config_dst_path.exists():
if config_shared_path.exists():
try:
os.symlink(config_shared_path, config_dst_path)
except Exception:
shutil.copy(config_shared_path, config_dst_path)
else:
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py")
with open("llm_config.py", "w", encoding="utf-8") as f:
f.write(r.text)
elif not os.path.islink(config_dst_path):
print("LLM config will be updated")
if config_shared_path.exists():
shutil.copy(config_shared_path, config_dst_path)
else:
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py")
with open("llm_config.py", "w", encoding="utf-8") as f:
f.write(r.text)
if not text_example_en_path.exists():
r = requests.get(url=text_example_en)
content = io.BytesIO(r.content)
with open("text_example_en.pdf", "wb") as f:
f.write(content.read())
if not text_example_cn_path.exists():
r = requests.get(url=text_example_cn)
content = io.BytesIO(r.content)
with open("text_example_cn.pdf", "wb") as f:
f.write(content.read())
model_language = "English"
llm_model_id = "llama-3-8b-instruct" #"llama-3.2-3b-instruct" #"llama-3-8b-instruct"
llm_model_configuration = SUPPORTED_LLM_MODELS[model_language][llm_model_id]
print(f"Selected LLM model {llm_model_id}")
prepare_int4_model = True # Prepare INT4 model
prepare_int8_model = False # Do not prepare INT8 model
prepare_fp16_model = False # Do not prepare FP16 model
enable_awq = False
# Get the token from the environment variable
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if hf_token is None:
raise ValueError(
"HUGGINGFACE_TOKEN environment variable not set. "
"Please set it in your environment variables or repository secrets."
)
# Log in to Hugging Face Hub
login(token=hf_token)
pt_model_id = llm_model_configuration["model_id"]
# pt_model_name = llm_model_id.value.split("-")[0]
fp16_model_dir = Path(llm_model_id) / "FP16"
int8_model_dir = Path(llm_model_id) / "INT8_compressed_weights"
int4_model_dir = Path(llm_model_id) / "INT4_compressed_weights"
def convert_to_fp16():
if (fp16_model_dir / "openvino_model.xml").exists():
return
remote_code = llm_model_configuration.get("remote_code", False)
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format fp16".format(pt_model_id)
if remote_code:
export_command_base += " --trust-remote-code"
export_command = export_command_base + " " + str(fp16_model_dir)
def convert_to_int8():
if (int8_model_dir / "openvino_model.xml").exists():
return
int8_model_dir.mkdir(parents=True, exist_ok=True)
remote_code = llm_model_configuration.get("remote_code", False)
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int8".format(pt_model_id)
if remote_code:
export_command_base += " --trust-remote-code"
export_command = export_command_base + " " + str(int8_model_dir)
def convert_to_int4():
compression_configs = {
"zephyr-7b-beta": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"mistral-7b": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"minicpm-2b-dpo": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"gemma-2b-it": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"notus-7b-v1": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"neural-chat-7b-v3-1": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"llama-2-chat-7b": {
"sym": True,
"group_size": 128,
"ratio": 0.8,
},
"llama-3-8b-instruct": {
"sym": True,
"group_size": 128,
"ratio": 0.8,
},
"gemma-7b-it": {
"sym": True,
"group_size": 128,
"ratio": 0.8,
},
"chatglm2-6b": {
"sym": True,
"group_size": 128,
"ratio": 0.72,
},
"qwen-7b-chat": {"sym": True, "group_size": 128, "ratio": 0.6},
"red-pajama-3b-chat": {
"sym": False,
"group_size": 128,
"ratio": 0.5,
},
"default": {
"sym": False,
"group_size": 128,
"ratio": 0.8,
},
}
model_compression_params = compression_configs.get(llm_model_id, compression_configs["default"])
if (int4_model_dir / "openvino_model.xml").exists():
return
remote_code = llm_model_configuration.get("remote_code", False)
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int4".format(pt_model_id)
int4_compression_args = " --group-size {} --ratio {}".format(model_compression_params["group_size"], model_compression_params["ratio"])
if model_compression_params["sym"]:
int4_compression_args += " --sym"
print("updated")
if enable_awq:
int4_compression_args += " --awq --dataset wikitext2 --num-samples 128"
export_command_base += int4_compression_args
if remote_code:
export_command_base += " --trust-remote-code"
# export_command = export_command_base + " " + str(int4_model_dir)
if prepare_fp16_model:
convert_to_fp16()
if prepare_int8_model:
convert_to_int8()
if prepare_int4_model:
convert_to_int4()
fp16_weights = fp16_model_dir / "openvino_model.bin"
int8_weights = int8_model_dir / "openvino_model.bin"
int4_weights = int4_model_dir / "openvino_model.bin"
if fp16_weights.exists():
print(f"Size of FP16 model is {fp16_weights.stat().st_size / 1024 / 1024:.2f} MB")
for precision, compressed_weights in zip([8, 4], [int8_weights, int4_weights]):
if compressed_weights.exists():
print(f"Size of model with INT{precision} compressed weights is {compressed_weights.stat().st_size / 1024 / 1024:.2f} MB")
if compressed_weights.exists() and fp16_weights.exists():
print(f"Compression rate for INT{precision} model: {fp16_weights.stat().st_size / compressed_weights.stat().st_size:.3f}")
embedding_model_id = 'bge-small-en-v1.5' #'bge-small-en-v1.5', 'bge-large-en-v1.5', 'bge-m3'), value='bge-small-en-v1.5'
embedding_model_configuration = SUPPORTED_EMBEDDING_MODELS[model_language][embedding_model_id]
print(f"Selected {embedding_model_id} model")
export_command_base = "optimum-cli export openvino --model {} --task feature-extraction".format(embedding_model_configuration["model_id"])
export_command = export_command_base + " " + str(embedding_model_id)
rerank_model_id = "bge-reranker-v2-m3" #'bge-reranker-v2-m3', 'bge-reranker-large', 'bge-reranker-base')
rerank_model_configuration = SUPPORTED_RERANK_MODELS[rerank_model_id]
print(f"Selected {rerank_model_id} model")
export_command_base = "optimum-cli export openvino --model {} --task text-classification".format(rerank_model_configuration["model_id"])
export_command = export_command_base + " " + str(rerank_model_id)
embedding_device = "CPU"
USING_NPU = embedding_device == "NPU"
npu_embedding_dir = embedding_model_id + "-npu"
npu_embedding_path = Path(npu_embedding_dir) / "openvino_model.xml"
if USING_NPU and not Path(npu_embedding_dir).exists():
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)
with open("notebook_utils.py", "w") as f:
f.write(r.text)
import notebook_utils as utils
shutil.copytree(embedding_model_id, npu_embedding_dir)
utils.optimize_bge_embedding(Path(embedding_model_id) / "openvino_model.xml", npu_embedding_path)
rerank_device = "CPU"
llm_device = "CPU"
from langchain_community.embeddings import OpenVINOBgeEmbeddings
embedding_model_name = npu_embedding_dir if USING_NPU else embedding_model_id
batch_size = 1 if USING_NPU else 4
embedding_model_kwargs = {"device": embedding_device, "compile": False}
encode_kwargs = {
"mean_pooling": embedding_model_configuration["mean_pooling"],
"normalize_embeddings": embedding_model_configuration["normalize_embeddings"],
"batch_size": batch_size,
}
embedding = OpenVINOBgeEmbeddings(
model_name_or_path="BAAI/bge-small-en-v1.5",
model_kwargs=embedding_model_kwargs,
encode_kwargs=encode_kwargs,
)
if USING_NPU:
embedding.ov_model.reshape(1, 512)
embedding.ov_model.compile()
text = "This is a test document."
embedding_result = embedding.embed_query(text)
print(embedding_result[:3])
from langchain_community.document_compressors.openvino_rerank import OpenVINOReranker
rerank_model_name = rerank_model_id
rerank_model_kwargs = {"device": rerank_device}
rerank_top_n = 2
reranker = OpenVINOReranker(
model_name_or_path="BAAI/bge-reranker-v2-m3",
model_kwargs=rerank_model_kwargs,
top_n=rerank_top_n,
)
model_to_run = "INT4"
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
if model_to_run == "INT4":
model_dir = int4_model_dir
elif model_to_run == "INT8":
model_dir = int8_model_dir
else:
model_dir = fp16_model_dir
print(f"Loading model from {model_dir}")
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
print("starting setting llm model")
llm = HuggingFacePipeline.from_model_id(
model_id="meta-llama/Meta-Llama-3-8B",
task="text-generation",
backend="openvino",
model_kwargs={
"device": llm_device,
"ov_config": ov_config,
"trust_remote_code": True,
},
pipeline_kwargs={"max_new_tokens": 2},
)
print(llm.invoke("2 + 2 ="))
# from optimum.intel.openvino import OVModelForCausalLM
# from transformers import pipeline
# model_id = "meta-llama/Meta-Llama-3-8B"
# ov_config = {"PERFORMANCE_HINT": "LATENCY"} # 这是一个例子,检查你的实际 ov_config
# # 使用 OpenVINO 导出模型
# model = OVModelForCausalLM.from_pretrained(
# model_id,
# export=True, # 将模型转换为 OpenVINO 格式
# use_cache=False,
# ov_config=ov_config,
# trust_remote_code=True # 支持远程代码的信任问题
# )
# # 保存 OpenVINO 模型
# model.save_pretrained("./openvino_llama_model")
# # Step 2: 加载保存的 OpenVINO 模型并设置推理任务
# llm_device = "CPU" # 确保你根据环境设置正确的设备
# llm = pipeline(
# task="text-generation",
# model=OVModelForCausalLM.from_pretrained("./openvino_llama_model"),
# device=llm_device,
# max_new_tokens=2 # 生成的最大新token数量
# )
# # Step 3: 执行推理
# output = llm("2 + 2 =")
# print(output)
# print("test:2+2:")
# print(llm.invoke("2 + 2 ="))
import re
from typing import List
from langchain.text_splitter import (
CharacterTextSplitter,
RecursiveCharacterTextSplitter,
MarkdownTextSplitter,
)
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyPDFLoader,
TextLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
class ChineseTextSplitter(CharacterTextSplitter):
def __init__(self, pdf: bool = False, **kwargs):
super().__init__(**kwargs)
self.pdf = pdf
def split_text(self, text: str) -> List[str]:
if self.pdf:
text = re.sub(r"\n{3,}", "\n", text)
text = text.replace("\n\n", "")
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))')
sent_list = []
for ele in sent_sep_pattern.split(text):
if sent_sep_pattern.match(ele) and sent_list:
sent_list[-1] += ele
elif ele:
sent_list.append(ele)
return sent_list
TEXT_SPLITERS = {
"Character": CharacterTextSplitter,
"RecursiveCharacter": RecursiveCharacterTextSplitter,
"Markdown": MarkdownTextSplitter,
"Chinese": ChineseTextSplitter,
}
LOADERS = {
".csv": (CSVLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
}
chinese_examples = [
["英特尔®酷睿™ Ultra处理器可以降低多少功耗?"],
["相比英特尔之前的移动处理器产品,英特尔®酷睿™ Ultra处理器的AI推理性能提升了多少?"],
["英特尔博锐® Enterprise系统提供哪些功能?"],
]
english_examples = [
["How much power consumption can Intel® Core™ Ultra Processors help save?"],
["Compared to Intel’s previous mobile processor, what is the advantage of Intel® Core™ Ultra Processors for Artificial Intelligence?"],
["What can Intel vPro® Enterprise systems offer?"],
]
if model_language == "English":
# text_example_path = "text_example_en.pdf"
text_example_path = ['Supervisors-Guide-Accurate-Timekeeping_AH edits.docx','Salary-vs-Hourly-Guide_AH edits.docx','Employee-Guide-Accurate-Timekeeping_AH edits.docx','Eller Overtime Guidelines.docx','Eller FLSA information 9.2024_AH edits.docx','Accurate Timekeeping Supervisors 12.2.20_AH edits.docx']
else:
text_example_path = "text_example_cn.pdf"
examples = chinese_examples if (model_language == "Chinese") else english_examples
from langchain.prompts import PromptTemplate
from langchain_community.vectorstores import FAISS
from langchain.chains.retrieval import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.docstore.document import Document
from langchain.retrievers import ContextualCompressionRetriever
from threading import Thread
import gradio as gr
stop_tokens = llm_model_configuration.get("stop_tokens")
rag_prompt_template = llm_model_configuration["rag_prompt_template"]
class StopOnTokens(StoppingCriteria):
def __init__(self, token_ids):
self.token_ids = token_ids
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_id in self.token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
if stop_tokens is not None:
if isinstance(stop_tokens[0], str):
stop_tokens = llm.pipeline.tokenizer.convert_tokens_to_ids(stop_tokens)
stop_tokens = [StopOnTokens(stop_tokens)]
def load_single_document(file_path: str) -> List[Document]:
"""
helper for loading a single document
Params:
file_path: document path
Returns:
documents loaded
"""
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADERS:
loader_class, loader_args = LOADERS[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"File does not exist '{ext}'")
def default_partial_text_processor(partial_text: str, new_text: str):
"""
helper for updating partially generated answer, used by default
Params:
partial_text: text buffer for storing previosly generated text
new_text: text update for the current step
Returns:
updated text string
"""
partial_text += new_text
return partial_text
text_processor = llm_model_configuration.get("partial_text_processor", default_partial_text_processor)
def create_vectordb(
docs, spliter_name, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold, progress=gr.Progress()
):
"""
Initialize a vector database
Params:
doc: orignal documents provided by user
spliter_name: spliter method
chunk_size: size of a single sentence chunk
chunk_overlap: overlap size between 2 chunks
vector_search_top_k: Vector search top k
vector_rerank_top_n: Search rerank top n
run_rerank: whether run reranker
search_method: top k search method
score_threshold: score threshold when selecting 'similarity_score_threshold' method
"""
global db
global retriever
global combine_docs_chain
global rag_chain
if vector_rerank_top_n > vector_search_top_k:
gr.Warning("Search top k must >= Rerank top n")
documents = []
for doc in docs:
if type(doc) is not str:
doc = doc.name
documents.extend(load_single_document(doc))
text_splitter = TEXT_SPLITERS[spliter_name](chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
db = FAISS.from_documents(texts, embedding)
if search_method == "similarity_score_threshold":
search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold}
else:
search_kwargs = {"k": vector_search_top_k}
retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method)
if run_rerank:
reranker.top_n = vector_rerank_top_n
retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever)
prompt = PromptTemplate.from_template(rag_prompt_template)
combine_docs_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(retriever, combine_docs_chain)
return "Vector database is Ready"
def update_retriever(vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold):
"""
Update retriever
Params:
vector_search_top_k: Vector search top k
vector_rerank_top_n: Search rerank top n
run_rerank: whether run reranker
search_method: top k search method
score_threshold: score threshold when selecting 'similarity_score_threshold' method
"""
global db
global retriever
global combine_docs_chain
global rag_chain
if vector_rerank_top_n > vector_search_top_k:
gr.Warning("Search top k must >= Rerank top n")
if search_method == "similarity_score_threshold":
search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold}
else:
search_kwargs = {"k": vector_search_top_k}
retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method)
if run_rerank:
retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever)
reranker.top_n = vector_rerank_top_n
rag_chain = create_retrieval_chain(retriever, combine_docs_chain)
return "Vector database is Ready"
def user(message, history):
"""
callback function for updating user messages in interface on submit button click
Params:
message: current message
history: conversation history
Returns:
None
"""
# Append the user's message to the conversation history
return "", history + [[message, ""]]
def bot(history, temperature, top_p, top_k, repetition_penalty, hide_full_prompt, do_rag):
"""
callback function for running chatbot on submit button click
Params:
history: conversation history
temperature: parameter for control the level of creativity in AI-generated text.
By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse.
top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability.
top_k: parameter for control the range of tokens considered by the AI model based on their cumulative probability, selecting number of tokens with highest probability.
repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text.
hide_full_prompt: whether to show searching results in promopt.
do_rag: whether do RAG when generating texts.
"""
streamer = TextIteratorStreamer(
llm.pipeline.tokenizer,
timeout=60.0,
skip_prompt=hide_full_prompt,
skip_special_tokens=True,
)
llm.pipeline._forward_params = dict(
max_new_tokens=512,
temperature=temperature,
do_sample=temperature > 0.0,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
streamer=streamer,
)
if stop_tokens is not None:
llm.pipeline._forward_params["stopping_criteria"] = StoppingCriteriaList(stop_tokens)
if do_rag:
# t1 = Thread(target=rag_chain.invoke, args=({"input": history[-1][0]},))
input_text = history[-1][0]
response = llm.invoke(input_text)
print(response)
else:
input_text = rag_prompt_template.format(input=history[-1][0], context="")
# t1 = Thread(target=llm.invoke, args=(input_text,))
# input_text = history[-1][0]
response = llm.invoke(input_text)
print(response)
# t1.start()
# Initialize an empty string to store the generated text
# partial_text = ""
# for new_text in streamer:
# partial_text = text_processor(partial_text, new_text)
# history[-1][1] = partial_text
history[-1][1] = response
yield history
def request_cancel():
llm.pipeline.model.request.cancel()
def clear_files():
return "Vector Store is Not ready"
# initialize the vector store with example document
create_vectordb(
text_example_path, #changed
"RecursiveCharacter",
chunk_size=400,
chunk_overlap=50,
vector_search_top_k=10,
vector_rerank_top_n=2,
run_rerank=True,
search_method="similarity_score_threshold",
score_threshold=0.5,
)
with gr.Blocks(
theme=gr.themes.Soft(),
css=".disclaimer {font-variant-caps: all-small-caps;}",
) as demo:
gr.Markdown("""<h1><center>QA over Document</center></h1>""")
gr.Markdown(f"""<center>Powered by OpenVINO and {llm_model_id} </center>""")
with gr.Row():
with gr.Column(scale=1):
docs = gr.File(
label="Step 1: Load text files",
value=text_example_path, #changed
file_count="multiple",
file_types=[
".csv",
".doc",
".docx",
".enex",
".epub",
".html",
".md",
".odt",
".pdf",
".ppt",
".pptx",
".txt",
],
)
load_docs = gr.Button("Step 2: Build Vector Store", variant="primary")
db_argument = gr.Accordion("Vector Store Configuration", open=False)
with db_argument:
spliter = gr.Dropdown(
["Character", "RecursiveCharacter", "Markdown", "Chinese"],
value="RecursiveCharacter",
label="Text Spliter",
info="Method used to splite the documents",
multiselect=False,
)
chunk_size = gr.Slider(
label="Chunk size",
value=400,
minimum=50,
maximum=2000,
step=50,
interactive=True,
info="Size of sentence chunk",
)
chunk_overlap = gr.Slider(
label="Chunk overlap",
value=50,
minimum=0,
maximum=400,
step=10,
interactive=True,
info=("Overlap between 2 chunks"),
)
langchain_status = gr.Textbox(
label="Vector Store Status",
value="Vector Store is Ready",
interactive=False,
)
do_rag = gr.Checkbox(
value=True,
label="RAG is ON",
interactive=True,
info="Whether to do RAG for generation",
)
with gr.Accordion("Generation Configuration", open=False):
with gr.Row():
with gr.Column():
with gr.Row():
temperature = gr.Slider(
label="Temperature",
value=0.1,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
with gr.Column():
with gr.Row():
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=1.0,
minimum=0.0,
maximum=1,
step=0.01,
interactive=True,
info=(
"Sample from the smallest possible set of tokens whose cumulative probability "
"exceeds top_p. Set to 1 to disable and sample from all tokens."
),
)
with gr.Column():
with gr.Row():
top_k = gr.Slider(
label="Top-k",
value=50,
minimum=0.0,
maximum=200,
step=1,
interactive=True,
info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.",
)
with gr.Column():
with gr.Row():
repetition_penalty = gr.Slider(
label="Repetition Penalty",
value=1.1,
minimum=1.0,
maximum=2.0,
step=0.1,
interactive=True,
info="Penalize repetition — 1.0 to disable.",
)
with gr.Column(scale=4):
chatbot = gr.Chatbot(
height=800,
label="Step 3: Input Query",
)
with gr.Row():
with gr.Column():
with gr.Row():
msg = gr.Textbox(
label="QA Message Box",
placeholder="Chat Message Box",
show_label=False,
container=False,
)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit", variant="primary")
stop = gr.Button("Stop")
clear = gr.Button("Clear")
gr.Examples(examples, inputs=msg, label="Click on any example and press the 'Submit' button")
retriever_argument = gr.Accordion("Retriever Configuration", open=True)
with retriever_argument:
with gr.Row():
with gr.Row():
do_rerank = gr.Checkbox(
value=True,
label="Rerank searching result",
interactive=True,
)
hide_context = gr.Checkbox(
value=True,
label="Hide searching result in prompt",
interactive=True,
)
with gr.Row():
search_method = gr.Dropdown(
["similarity_score_threshold", "similarity", "mmr"],
value="similarity_score_threshold",
label="Searching Method",
info="Method used to search vector store",
multiselect=False,
interactive=True,
)
with gr.Row():
score_threshold = gr.Slider(
0.01,
0.99,
value=0.5,
step=0.01,
label="Similarity Threshold",
info="Only working for 'similarity score threshold' method",
interactive=True,
)
with gr.Row():
vector_rerank_top_n = gr.Slider(
1,
10,
value=2,
step=1,
label="Rerank top n",
info="Number of rerank results",
interactive=True,
)
with gr.Row():
vector_search_top_k = gr.Slider(
1,
50,
value=10,
step=1,
label="Search top k",
info="Search top k must >= Rerank top n",
interactive=True,
)
docs.clear(clear_files, outputs=[langchain_status], queue=False)
load_docs.click(
create_vectordb,
inputs=[docs, spliter, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
outputs=[langchain_status],
queue=False,
)
submit_event = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot,
[chatbot, temperature, top_p, top_k, repetition_penalty, hide_context, do_rag],
chatbot,
queue=True,
)
submit_click_event = submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot,
[chatbot, temperature, top_p, top_k, repetition_penalty, hide_context, do_rag],
chatbot,
queue=True,
)
stop.click(
fn=request_cancel,
inputs=None,
outputs=None,
cancels=[submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
vector_search_top_k.release(
update_retriever,
[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
outputs=[langchain_status],
)
vector_rerank_top_n.release(
update_retriever,
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
outputs=[langchain_status],
)
do_rerank.change(
update_retriever,
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
outputs=[langchain_status],
)
search_method.change(
update_retriever,
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
outputs=[langchain_status],
)
score_threshold.change(
update_retriever,
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
outputs=[langchain_status],
)
demo.queue()
# if you are launching remotely, specify server_name and server_port
# demo.launch(server_port=8082)
# if you have any issue to launch on your platform, you can pass share=True to launch method:
demo.launch()
# it creates a publicly shareable link for the interface. Read more in the docs: https://gradio.app/docs/
# demo.launch()
|