Spaces:
Sleeping
Sleeping
File size: 21,876 Bytes
a6cec16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
import os
import torch
import random
import numpy as np
import gradio as gr
from glob import glob
from datetime import datetime
from diffusers import StableDiffusionPipeline,AutoencoderKL
from diffusers import DDIMScheduler, LCMScheduler, EulerDiscreteScheduler
import torch.nn.functional as F
from PIL import Image,ImageDraw
from utils.pipeline import ZePoPipeline
from utils.attn_control import AttentionStyle
from torchvision.utils import save_image
import utils.ptp_utils as ptp_utils
import torchvision.transforms as transforms
try:
import xformers
is_xformers = True
except ImportError:
is_xformers = False
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
# import sys
# sys.setrecursionlimit(100000)
class GlobalText:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion")
self.personalized_model_dir = './models/Stable-diffusion'
self.lora_model_dir = './models/Lora'
self.savedir = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
self.savedir_sample = os.path.join(self.savedir, "sample")
# self.savedir_mask = os.path.join(self.savedir, "mask")
self.stable_diffusion_list = ["SimianLuo/LCM_Dreamshaper_v7"
]
self.personalized_model_list = []
self.lora_model_list = []
self.tokenizer = None
self.text_encoder = None
self.vae = None
self.unet = None
self.pipeline = None
self.torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
self.lora_model_state_dict = {}
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def init_source_image_path(self, source_path):
self.source_paths = sorted(glob(os.path.join(source_path, '*')))
self.max_source_index = len(self.source_paths) // 12
return self.source_paths[0:12]
def init_style_image_path(self, style_path):
self.style_paths = sorted(glob(os.path.join(style_path, '*')))
self.max_style_index = len(self.style_paths) // 12
return self.style_paths[0:12]
def init_results_image_path(self):
results_paths = [os.path.join(self.savedir_sample, file) for file in os.listdir(self.savedir_sample)]
self.results_paths = sorted(results_paths, key=os.path.getctime, reverse=True)
self.max_results_index = len(self.results_paths) // 12
return self.results_paths[0:12]
def load_base_pipeline(self, model_path):
time_start = datetime.now()
self.scheduler = 'LCM'
scheduler = LCMScheduler.from_pretrained(model_path, subfolder="scheduler")
self.pipeline = ZePoPipeline.from_pretrained(model_path,scheduler=scheduler,torch_dtype=torch.float16,).to('cuda')
if is_xformers:
self.pipeline.enable_xformers_memory_efficient_attention()
time_end = datetime.now()
print(f'Load {model_path} successful in {time_end-time_start}')
return gr.Dropdown()
def refresh_stable_diffusion(self,model_path):
self.load_base_pipeline(model_path)
return self.stable_diffusion_list[0]
def update_base_model(self, base_model_dropdown):
if self.pipeline is None:
gr.Info(f"Please select a pretrained model path.")
return None
else:
base_model = self.personalized_model_list[base_model_dropdown]
mid_model = StableDiffusionPipeline.from_single_file(base_model)
self.pipeline.vae = mid_model.vae
self.pipeline.unet = mid_model.unet
self.pipeline.text_encoder = mid_model.text_encoder
self.pipeline.to(self.device)
self.personal_model_loaded = base_model_dropdown.split('.')[0]
print(f'load {base_model_dropdown} model success!')
return gr.Dropdown()
def generate(self, source, style,
num_steps, co_feat_step,strength,
start_ac_layer, end_ac_layer,
sty_guidance,cfg_scale, mix_q_scale,
Scheduler, save_intermediate, seed, de_bug,
target_prompt, negative_prompt_textbox,
width_slider,height_slider,
tome_sx, tome_sy, tome_ratio,tome,
):
os.makedirs(self.savedir, exist_ok=True)
os.makedirs(self.savedir_sample, exist_ok=True)
if self.pipeline == None:
self.refresh_stable_diffusion(self.stable_diffusion_list[-1])
model = self.pipeline
if Scheduler == 'DDIM':
model.scheduler = DDIMScheduler.from_config(model.scheduler.config)
print(f"Successful adoption of DDIM scheduler")
if Scheduler == 'LCM':
model.scheduler = LCMScheduler.from_config(model.scheduler.config)
print(f"Successful adoption of LCM scheduler")
if Scheduler == 'EulerDiscrete':
model.scheduler = EulerDiscreteScheduler.from_config(model.scheduler.config)
if seed != '-1' and seed != "": torch.manual_seed(int(seed))
else: torch.seed()
seed = torch.initial_seed()
print(f"Seed: {seed}")
self.sample_count = len(os.listdir(self.savedir_sample))
prompts = [target_prompt] * 3
source = source.resize((width_slider, height_slider))
style = style.resize((width_slider, height_slider))
with torch.no_grad():
controller = AttentionStyle(num_steps,
start_ac_layer,
end_ac_layer,
style_guidance=sty_guidance,
mix_q_scale=mix_q_scale,
de_bug=de_bug,
)
ptp_utils.register_attention_control(model, controller,
tome,
sx=tome_sx,
sy=tome_sy,
ratio=tome_ratio,
de_bug=de_bug,)
time_begin = datetime.now()
generate_image = model(prompt=prompts,
negative_prompt=negative_prompt_textbox,
image=source,
style=style,
num_inference_steps=num_steps,
eta=0.0,
guidance_scale=cfg_scale,
strength=strength,
save_intermediate=save_intermediate,
fix_step_index=co_feat_step,
de_bug = de_bug,
callback = None
).images
time_end = datetime.now()
print('generate one image with time {}'.format(time_end-time_begin))
save_file_name = f"{self.sample_count}_step{num_steps}_sl{start_ac_layer}_el{end_ac_layer}_ST{strength}_CF{co_feat_step}_STG{sty_guidance}_MQ{mix_q_scale}_CFG{cfg_scale}_seed{seed}.jpg"
save_file_path = os.path.join(self.savedir, save_file_name)
save_image(torch.tensor(generate_image).permute(0, 3, 1, 2), save_file_path, nrow=3, padding=0)
save_image(torch.tensor(generate_image[2:]).permute(0, 3, 1, 2), os.path.join(self.savedir_sample, save_file_name), nrow=3, padding=0)
self.init_results_image_path()
return [
generate_image[0],
generate_image[1],
generate_image[2],
self.init_results_image_path()
]
global_text = GlobalText()
def ui():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# [ZePo: Zero-Shot Portrait Stylization with Faster Sampling](https://arxiv.org/abs/2408.05492)
Jin Liu, Huaibo Huang, Jie Cao, Ran He<br>
[Arxiv](https://arxiv.org/abs/2408.05492) | [Github](https://github.com/liujin112/ZePo)
"""
)
with gr.Column(variant="panel"):
gr.Markdown(
"""
### 1. Select a pretrained model.
"""
)
with gr.Row():
stable_diffusion_dropdown = gr.Dropdown(
label="Pretrained Model Path",
choices=global_text.stable_diffusion_list,
interactive=True,
allow_custom_value=True
)
stable_diffusion_dropdown.change(fn=global_text.load_base_pipeline, inputs=[stable_diffusion_dropdown], outputs=[stable_diffusion_dropdown])
stable_diffusion_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_stable_diffusion(stable_diffusion_dropdown):
global_text.refresh_stable_diffusion(stable_diffusion_dropdown)
stable_diffusion_refresh_button.click(fn=update_stable_diffusion, inputs=[stable_diffusion_dropdown], outputs=[stable_diffusion_dropdown])
with gr.Column(variant="panel"):
gr.Markdown(
"""
### 2. Configs for ZePo.
"""
)
with gr.Tab("Configs"):
with gr.Row():
with gr.Column():
with gr.Row():
source_image = gr.Image(label="Source Image", elem_id="img2maskimg", sources="upload", type="pil",image_mode="RGB", height=256)
style_image = gr.Image(label="Style Image", elem_id="img2maskimg", sources="upload", type="pil", image_mode="RGB", height=256)
generate_image = gr.Image(label="Image with PortraitDiff", type="pil", interactive=True, image_mode="RGB", height=512)
with gr.Row():
recons_content = gr.Image(label="reconstructed content", type="pil", image_mode="RGB", height=256)
recons_style = gr.Image(label="reconstructed style", type="pil", image_mode="RGB", height=256)
prompt_textbox = gr.Textbox(label="Prompt", value='head', lines=1)
negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=1)
with gr.Row(equal_height=False):
with gr.Column():
with gr.Tab("Resolution"):
width_slider = gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64)
height_slider = gr.Slider(label="Height", value=512, minimum=256, maximum=1024, step=64)
Scheduler = gr.Dropdown(
["DDIM", "LCM", "EulerDiscrete"],
value="LCM",
label="Scheduler", info="Select a Scheduler")
with gr.Tab("Content Gallery"):
with gr.Row():
source_path = gr.Textbox(value='./data/content', label="Source Path")
refresh_source_list_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
source_gallery_index = gr.Slider(label="Index", value=0, minimum=0, maximum=50, step=1)
num_gallery_images = 12
source_image_gallery = gr.Gallery(value=[], columns=4, label="Source Image List")
refresh_source_list_button.click(fn=global_text.init_source_image_path, inputs=[source_path], outputs=[source_image_gallery])
def update_source_list(index):
if int(index) < 0:
index = 0
if int(index) > global_text.max_source_index:
index = global_text.max_source_index
return global_text.source_paths[int(index)*num_gallery_images:(int(index)+1)*num_gallery_images]
source_gallery_index.change(fn=update_source_list, inputs=[source_gallery_index], outputs=[source_image_gallery])
with gr.Tab("Style Gallery"):
with gr.Row():
style_path = gr.Textbox(value='./data/style', label="style Path")
refresh_style_list_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
style_gallery_index = gr.Slider(label="Index", value=0, minimum=0, maximum=50, step=1)
num_gallery_images = 12
style_image_gallery = gr.Gallery(value=[], columns=4, label="style Image List")
refresh_style_list_button.click(fn=global_text.init_style_image_path, inputs=[style_path], outputs=[style_image_gallery])
def update_style_list(index):
if int(index) < 0:
index = 0
if int(index) > global_text.max_style_index:
index = global_text.max_style_index
return global_text.style_paths[int(index)*num_gallery_images:(int(index)+1)*num_gallery_images]
style_gallery_index.change(fn=update_style_list, inputs=[style_gallery_index], outputs=[style_image_gallery])
with gr.Tab("Results Gallery"):
with gr.Row():
refresh_results_list_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
results_gallery_index = gr.Slider(label="Index", value=0, minimum=0, maximum=50, step=1)
num_gallery_images = 12
results_image_gallery = gr.Gallery(value=[], columns=4, label="style Image List")
refresh_results_list_button.click(fn=global_text.init_results_image_path, inputs=[], outputs=[results_image_gallery])
def update_results_list(index):
if int(index) < 0:
index = 0
if int(index) > global_text.max_results_index:
index = global_text.max_results_index
return global_text.results_paths[int(index)*num_gallery_images:(int(index)+1)*num_gallery_images]
results_gallery_index.change(fn=update_results_list, inputs=[results_gallery_index], outputs=[style_image_gallery])
with gr.Row():
generate_button = gr.Button(value="Generate", variant='primary')
with gr.Tab('Base Configs'):
num_steps = gr.Slider(label="Total Steps", value=4, minimum=0, maximum=25, step=1)
strength = gr.Slider(label="Noisy Ratio", value=0.5, minimum=0, maximum=1, step=0.01,info="How much noise applied to souce image, 50% for better balance.")
co_feat_step = gr.Slider(label="Consistency Feature Extract Step", value=99, minimum=0, maximum=999, step=1)
with gr.Row():
start_ac_layer = gr.Slider(label="Start Layer of AC",
minimum=0,
maximum=16,
value=8,
step=1)
end_ac_layer = gr.Slider(label="End Layer of AC",
minimum=0,
maximum=16,
value=16,
step=1)
with gr.Row():
Style_Guidance = gr.Slider(label="Style Guidance Scale",
minimum=-1,
maximum=3,
value=1.2,
step=0.01,
)
mix_q_scale = gr.Slider(label='Query Mix Ratio',
minimum=0,
maximum=2,
step=0.05,
value=1.0,
)
cfg_scale_slider = gr.Slider(label="CFG Scale", value=2.5, minimum=0, maximum=20, info="Classifier-free guidance scale.")
with gr.Row():
save_intermediate = gr.Checkbox(label="save_intermediate", value=False)
de_bug = gr.Checkbox(value=False,label='DeBug')
with gr.Tab('ToMe'):
with gr.Row():
tome = gr.Checkbox(label="Token Merge", value=True)
tome_ratio = gr.Slider(label='ratio: ',
minimum=0,
maximum=1,
step=0.1,
value=0.5)
with gr.Row():
tome_sx = gr.Slider(label='sx:',
minimum=0,
maximum=64,
step=2,
value=2)
tome_sy = gr.Slider(label='sy:',
minimum=0,
maximum=64,
step=2,
value=2)
with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=-1)
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: random.randint(1, 1e16), inputs=[], outputs=[seed_textbox])
inputs = [
source_image, style_image,
num_steps,co_feat_step,strength,
start_ac_layer, end_ac_layer,
Style_Guidance,cfg_scale_slider,mix_q_scale,
Scheduler, save_intermediate, seed_textbox, de_bug,
prompt_textbox, negative_prompt_textbox,
width_slider,height_slider,
tome_sx, tome_sy, tome_ratio, tome,
]
generate_button.click(
fn=global_text.generate,
inputs=inputs,
outputs=[recons_style,recons_content,generate_image,results_image_gallery]
)
ex = gr.Examples(
[
["./data/content/27032.jpg","./data/style/27.jpg",4,0.8,0.5,8427921159605868845],
["./data/content/29812.jpg","./data/style/47.jpg",4,0.5,0.65,8119359809263726691],
],
[source_image, style_image, num_steps,strength, mix_q_scale, seed_textbox],
[
"Example 1",
],)
return demo
if __name__ == "__main__":
demo = ui()
demo.launch(server_name='172.18.32.44',show_error=True) |