import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, BartForConditionalGeneration # Load the models and tokenizers @st.cache_resource def load_models(): t5_model = AutoModelForSeq2SeqLM.from_pretrained("Jiraheya/samsum_model_t5_small_10_epochs") t5_tokenizer = AutoTokenizer.from_pretrained("Jiraheya/samsum_model_t5_small_10_epochs") bart_model = BartForConditionalGeneration.from_pretrained("Jiraheya/pegasus_xsum_samsum_model_10epoch") bart_tokenizer = AutoTokenizer.from_pretrained("Jiraheya/pegasus_xsum_samsum_model_10epoch") return t5_model, t5_tokenizer, bart_model, bart_tokenizer t5_model, t5_tokenizer, bart_model, bart_tokenizer = load_models() # Set up the Streamlit app st.title("Dialogue Summarizer Chatbot") # Create a dropdown for model selection model_choice = st.selectbox( "Choose a model:", ("T5-small", "BART-large-cnn") ) # Create a text area for user input user_input = st.text_area("Enter your dialogue here:", height=200) # Create a button to generate summary if st.button("Generate Summary"): if user_input: # Prepare input for the model input_text = "summarize: " + user_input if model_choice == "T5-small": inputs = t5_tokenizer([input_text], max_length=1024, return_tensors="pt") summary_ids = t5_model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=60) summary = t5_tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] else: # BART-large-cnn inputs = bart_tokenizer([input_text], max_length=1024, return_tensors="pt") summary_ids = bart_model.generate(inputs["input_ids"], num_beams=2, min_length=10, max_length=60) summary = bart_tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # Display the summary st.subheader("Summary:") st.write(summary) else: st.warning("Please enter some dialogue to summarize.") # Add information about the app in the sidebar st.sidebar.subheader("About the App") st.sidebar.info( "This app uses fine-tuned models to summarize dialogues. " "Choose a model, enter your dialogue in the text area, and click 'Generate Summary' to get a concise summary." ) st.sidebar.markdown("Models available:") st.sidebar.markdown("- T5-small: Jiraheya/samsum_model_t5_small_10_epochs") st.sidebar.markdown("- BART-large-cnn: Jiraheya/pegasus_xsum_samsum_model_10epoch")