File size: 14,832 Bytes
101b485 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import streamlit as st
import pickle
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import numpy as np
from pymongo import MongoClient
import urllib.parse
import requests
from bertopic import BERTopic
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import string
import deepcut
import unicodedata
from pythainlp.util import normalize
import torch
import csv
#initial state
if 'state' not in st.session_state:
st.session_state.state = 0
if 'age' not in st.session_state:
st.session_state.age = 0
if 'weight' not in st.session_state:
st.session_state.weight = 0
if 'height' not in st.session_state:
st.session_state.height = 0
if 'gender' not in st.session_state:
st.session_state.gender = 0
if 'food_allergy' not in st.session_state:
st.session_state.food_allergy = 0
if 'drug_allergy' not in st.session_state:
st.session_state.drug_allergy = 0
if 'congentital_disease' not in st.session_state:
st.session_state.congentital_disease = 0
if 'optional_keyword' not in st.session_state:
st.session_state.optional_keyword = 0
if 'all_recommend' not in st.session_state:
st.session_state.all_recommend = None
if 'true_check' not in st.session_state:
st.session_state.true_check = None
if 'queries' not in st.session_state:
st.session_state.queries = None
if 'string_contain' not in st.session_state:
st.session_state.string_contain = False
if 'sbert_searched_df' not in st.session_state:
st.session_state.sbert_searched_df = None
if 'string_contain_df' not in st.session_state:
st.session_state.string_contain_df = None
for i in range(10):
if 'score_'+str(i+1) not in st.session_state:
st.session_state['score_'+str(i+1)] = 'NA'
def set_state(state):
st.session_state.state = state
def split_text(text):
return text.split(',')
#import data
sbert_model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
with open('corpus_embeddings.pickle', 'rb') as file:
corpus_embeddings = pickle.load(file)
corpus_embeddings = pd.DataFrame(corpus_embeddings)
topic_model = BERTopic.load("topic_model.pickle")
data = pd.read_csv('articles_data.csv')
data['child_topic'] = topic_model.topics_[:]
with open('sensitive_words.txt', 'r',encoding='utf-8') as file:
sensitive_words = file.read()
sensitive_words = sensitive_words.lower().replace('\n','').split(' ')
sensitive_words = list(set(sensitive_words))
#local function
def save_session_state_data(session_state_data, filename):
with open(filename, 'a', newline='', encoding='utf-8') as file:
writer = csv.DictWriter(file, fieldnames=session_state_data.keys())
if file.tell() == 0:
writer.writeheader()
writer.writerow(session_state_data)
def deepcut_tokenizer(text,sensitive_words=sensitive_words):
cleanedText = "".join([i for i in text if i not in string.punctuation]).lower()
cleanedText = normalize(unicodedata.normalize('NFKD', cleanedText).replace('\n','').replace('\r','').replace('\t','').replace('“','').replace('”','').replace('.','').replace('–','').replace('‘','').replace('’','').replace('ํา','ำ').replace('...','').replace(',','').replace( 'ี','ี'))
#cleanedText = re.sub(r'\d+', '', cleanedText)
cleanedText = deepcut.tokenize(cleanedText,custom_dict=sensitive_words)
#stopwords = list(thai_stopwords())+'EMagazine GJ international bangkok hospital'.lower().split(' ')
stopwords = 'EMagazine GJ international bangkok hospital'.lower().split(' ')
cleanedText = [i for i in cleanedText if i not in stopwords]
cleanedText = [i.replace(' ','') for i in cleanedText if len(i) != 1 and len(i) !=0]
cleanedText = ','.join(cleanedText)
return cleanedText
def personal_check(age,weight,height,gender):
#age check
if age >= 60:
age = 'ผู้สูงอายุ'
else:
age = 'ทำงาน'
#gender check
if gender == 'หญิง':
gender = 'ผู้หญิง'
else:
gender = 'ผู้ชาย'
#bmi check
height_meters = height / 100
bmi = weight / (height_meters ** 2)
if bmi >= 30:
bmi = 'อ้วนมาก'
elif bmi >= 23 and bmi <30:
bmi = 'อ้วน'
elif bmi >= 18.5 and bmi <23:
bmi = ''
else:
bmi = 'ผอม'
return age,gender,bmi
def sbert_search(queries,data,embeddiing,sbert_model=sbert_model):
index_lst = []
score_lst = []
query_embedding = sbert_model.encode(queries, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, embeddiing, top_k=15)
hits = hits[0]
for hit in hits:
index_lst.append(hit['corpus_id'])
score_lst.append(hit['score'])
sbert_searched = data.iloc[index_lst]
sbert_searched['score'] = score_lst
return sbert_searched
def sbert_tfidf_search(queries,head,topic_model=topic_model,data=data,corpus_embeddings=corpus_embeddings):
similar_df = None
text_to_predict_token = deepcut_tokenizer(queries)
# Find topics
try:
similar_topics, similarity = topic_model.find_topics(text_to_predict_token, top_n=1)
except:
similar_topics, similarity = topic_model.find_topics(queries, top_n=1)
# Example DataFrame
similar_df = data[data['child_topic'] == similar_topics[0]]
# TF-IDF vectorizer
vectorizer = TfidfVectorizer(tokenizer=lambda x: x, lowercase=False)
tfidf_matrix = vectorizer.fit_transform(similar_df['text_token'])
# TF-IDF vector for input text
text_tfidf = vectorizer.transform([text_to_predict_token])
# Compute cosine similarity
similarity_scores = cosine_similarity(tfidf_matrix, text_tfidf)
# Add similarity scores to DataFrame
similar_df['score'] = similarity_scores
similar_df = similar_df.sort_values('score', ascending=False).head(15)
select_corpus = corpus_embeddings.iloc[similar_df.index.sort_values()]
similar_embedding = torch.tensor(select_corpus.values)
similar_searched = sbert_search(queries,similar_df,similar_embedding)
sbert_searched = sbert_search(queries,data,torch.tensor(corpus_embeddings.values))
combined_searched = pd.concat([similar_searched,sbert_searched])
output = combined_searched.sort_values('score', ascending=False).head(head)
return output
def string_contain_search(queries,sample,data=data):
data['all_content'] = data['title']+data['content']
return data[data['all_content'].str.contains(queries,na=False)].sample(sample)
#main
def main():
#header
st.markdown("<h1 style='text-align: center; color: black;'>---ระบบแนะนำบทความสุขภาพ---</h1>", unsafe_allow_html=True)
st.subheader("ให้คะแนนบทความหน่อยนะครับ😄")
with st.form('user_info'):
#personal information input
age = st.slider("อายุ", 10, 100, 25)
col1, col2 = st.columns(2)
with col1:
weight = st.number_input("น้ำหนัก (Kg.): ",30.0,120.0,step=1.0,value=50.0)
with col2:
height = st.number_input("ส่วนสูง (cm.): ",100.0,250.0,step=1.0,value=150.0)
col3, col4, col5 = st.columns(3)
with col3:
gender = st.selectbox('เพศ',('ชาย', 'หญิง'))
with col4:
food_allergy = st.selectbox('แพ้อาหาร?',('ไม่แพ้', 'แพ้อาหาร'))
with col5:
drug_allergy = st.selectbox('แพ้ยา?',('ไม่แพ้', 'แพ้ยา'))
congentital_disease = st.text_input('โรคประจำตัวของคุณ (ถ้าหากไม่มี ไม่ต้องกรอก หรือใส่ "ไม่มี")')
optional_keyword = st.text_input('คำค้นหาเพิ่มเติม (ถ้ามี)')
st.form_submit_button(on_click=set_state,args=(1,))
if st.session_state.state == 1:
#asign state
st.session_state.age = age
st.session_state.weight = weight
st.session_state.height = height
st.session_state.gender = gender
st.session_state.food_allergy = food_allergy
st.session_state.drug_allergy = drug_allergy
st.session_state.congentital_disease = congentital_disease
st.session_state.optional_keyword = optional_keyword
#algorithm
age,gender,bmi = personal_check(age,weight,height,gender)
if food_allergy == 'ไม่แพ้':
food_allergy = ''
if drug_allergy == 'ไม่แพ้':
drug_allergy = ''
if congentital_disease == 'ไม่มี':
congentital_disease = ''
if congentital_disease != '' or optional_keyword != '':
queries = optional_keyword+congentital_disease
else:
queries = gender+age+bmi+food_allergy+drug_allergy+congentital_disease+optional_keyword
#Bertopic search
try:
sbert_searched = sbert_tfidf_search(queries,5)
string_contain = string_contain_search(queries,5)
all_recommend = pd.concat([sbert_searched,string_contain])
all_recommend = all_recommend.drop_duplicates(subset=['url'])
if len(all_recommend) != 10:
for i in range(3):
if len(all_recommend) < 10:
all_recommend = None
sbert_searched = sbert_tfidf_search(queries,5+i+1)
sbert_searched = sbert_searched.head(5)
string_contain = string_contain_search(queries,5+i+1)
string_contain = string_contain.head(5)
all_recommend = pd.concat([sbert_searched,string_contain])
all_recommend = all_recommend.drop_duplicates(subset=['url'])
st.session_state.sbert_searched_df = sbert_searched
st.session_state.string_contain_df = string_contain
st.session_state.string_contain = True
except:
sbert_searched = sbert_tfidf_search(queries,10)
st.session_state.sbert_searched_df = sbert_searched
all_recommend = sbert_searched
st.session_state.all_recommend = all_recommend
st.session_state.queries = queries
st.session_state.state = 2
if st.session_state.state == 2:
placeholder = st.empty()
#satisfaction
with placeholder.form('Satisfaction Survey'):
st.markdown("<h1 style='text-align: center; color: black;'>📰บทความสำหรับคุณ😆</h1>", unsafe_allow_html=True)
st.header("ระดับความเกี่ยวข้อง")
st.write("😞 หมายถึง ไม่เกี่ยวข้องเลย")
st.write("🙁 หมายถึง เกี่ยวข้องเล็กน้อย")
st.write("😐 หมายถึง เฉยๆ")
st.write("🙂 หมายถึง ค่อนข้างเกี่ยวข้อง")
st.write("😀 หมายถึง เกี่ยวข้องมากที่สุด")
st.write("---------------------------------------------------------------------------------------")
for i in range(len(st.session_state.all_recommend)):
st.header(str(i+1)+'. '+st.session_state.all_recommend.iloc[i]['title'])
st.markdown(f"[Page source (Click here.)]({st.session_state.all_recommend.iloc[i].url})")
try:
banner_url = urllib.parse.quote(st.session_state.all_recommend.iloc[i]['banner'], safe=':/')
response = requests.get(banner_url)
st.image(response.content)
except:
st.image('https://icon-library.com/images/no-photo-icon/no-photo-icon-1.jpg')
#satisfaction survey
st.subheader("Satisfaction Survey")
st.write("บทความที่แนะนำเกี่ยวข้องกับคุณมากเพียงใด")
st.radio('ระดับความพึงพอใจ',['NA','😞','🙁','😐','🙂','😀'],horizontal=True,key='score_'+str(i+1))
st.write("---------------------------------------------------------------------------------------")
if st.form_submit_button("ยืนยันการส่งคำตอบ"):
# Check if all articles have satisfaction levels selected
st.session_state.true_check = []
for satis_val in [st.session_state[i] for i in ['score_' + str(i+1) for i in range(10)]]:
if satis_val != 'NA':
st.session_state.true_check.append(True)
else:
st.session_state.true_check.append(False)
if np.all(st.session_state.true_check):
st.session_state.state = 3
placeholder.empty()
else:
idx = []
for i in range(len(st.session_state.true_check)):
if st.session_state.true_check[i] == False:
idx.append(i+1)
article_indexes = ', '.join(map(str, idx))
st.warning(f":red[กรุณาให้คะแนนบทความที่ {article_indexes} ด้วยครับ]")
if st.session_state.state == 3:
st.success('บันทึกคำตอบแล้ว')
st.session_state.all_recommend = st.session_state.all_recommend.to_dict(orient='records')
if st.session_state.sbert_searched_df is not None:
st.session_state.sbert_searched_df = st.session_state.sbert_searched_df.to_dict(orient='records')
if st.session_state.string_contain_df is not None:
st.session_state.string_contain_df = st.session_state.string_contain_df.to_dict(orient='records')
try:
save_session_state_data(st.session_state.to_dict(), 'satisfaction.csv')
except:
#database insertion
client = MongoClient('mongodb://192.168.1.103:27017/')
database = client['test']
collection = database['satisfy_articles']
collection.insert_one(st.session_state.to_dict())
finally:
st.session_state.state = 0
if __name__ == "__main__":
main() |