File size: 8,917 Bytes
3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 1484ac4 3732dc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import streamlit as st
import pickle
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import numpy as np
import urllib.parse
import requests
#initial state
if 'state_p1' not in st.session_state:
st.session_state.state_p1 = 0
if 'state_p2' not in st.session_state:
st.session_state.state_p2 = 0
if 'age' not in st.session_state:
st.session_state.age = 0
if 'weight' not in st.session_state:
st.session_state.weight = 0
if 'height' not in st.session_state:
st.session_state.height = 0
if 'gender' not in st.session_state:
st.session_state.gender = 0
if 'food_allergy' not in st.session_state:
st.session_state.food_allergy = 0
if 'drug_allergy' not in st.session_state:
st.session_state.drug_allergy = 0
if 'congentital_disease' not in st.session_state:
st.session_state.congentital_disease = 0
if 'queries' not in st.session_state:
st.session_state.queries = None
if 'sbert_searched_df' not in st.session_state:
st.session_state.sbert_searched_df = None
if 'queries_p2' not in st.session_state:
st.session_state.queries_p2 = None
if 'sbert_searched_df_p2' not in st.session_state:
st.session_state.sbert_searched_df_p2 = None
for i in range(10):
if 'score_'+str(i+1) not in st.session_state:
st.session_state['score_'+str(i+1)] = 'NA'
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
def set_state_p1(state):
st.session_state.state_p1 = state
def set_state_p2(state):
st.session_state.state_p2 = state
def split_text(text):
return text.split(',')
#import data
sbert_model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
data = pd.read_csv('articles_data.csv')
with open('corpus_embeddings.pickle', 'rb') as file:
corpus_embeddings = pickle.load(file)
#local function
def personal_check(age,weight,height,gender):
#age check
if age >= 60:
age = 'ผู้สูงอายุ'
else:
age = 'ทำงาน'
#gender check
if gender == 'หญิง':
gender = 'ผู้หญิง'
else:
gender = 'ผู้ชาย'
#bmi check
height_meters = height / 100
bmi = weight / (height_meters ** 2)
if bmi >= 30:
bmi = 'อ้วนมาก'
elif bmi >= 23 and bmi <30:
bmi = 'อ้วน'
elif bmi >= 18.5 and bmi <23:
bmi = ''
else:
bmi = 'ผอม'
return age,gender,bmi
def sbert_search(queries,data,embeddiing,sbert_model=sbert_model):
index_lst = []
score_lst = []
query_embedding = sbert_model.encode(queries, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, embeddiing, top_k=10)
hits = hits[0]
for hit in hits:
index_lst.append(hit['corpus_id'])
score_lst.append(hit['score'])
sbert_searched = data.iloc[index_lst]
sbert_searched['score'] = score_lst
return sbert_searched
def page1_recommendation():
#header
st.markdown("<h1 style='text-align: center; color: black;'>---ระบบแนะนำบทความสุขภาพ---</h1>", unsafe_allow_html=True)
with st.form('user_info'):
#personal information input
age = st.slider("อายุ", 10, 100, 25)
col1, col2 = st.columns(2)
with col1:
weight = st.number_input("น้ำหนัก (Kg.): ",30.0,120.0,step=1.0,value=50.0)
with col2:
height = st.number_input("ส่วนสูง (cm.): ",100.0,250.0,step=1.0,value=150.0)
col3, col4, col5 = st.columns(3)
with col3:
gender = st.selectbox('เพศ',('ชาย', 'หญิง'))
with col4:
food_allergy = st.selectbox('แพ้อาหาร?',('ไม่แพ้', 'แพ้อาหาร'))
with col5:
drug_allergy = st.selectbox('แพ้ยา?',('ไม่แพ้', 'แพ้ยา'))
congentital_disease = st.text_input('โรคประจำตัวของคุณ (ถ้าหากไม่มี ไม่ต้องกรอก หรือใส่ "ไม่มี")')
st.form_submit_button(on_click=set_state_p1,args=(1,))
if st.session_state.state_p1 == 1:
#asign state
st.session_state.age = age
st.session_state.weight = weight
st.session_state.height = height
st.session_state.gender = gender
st.session_state.food_allergy = food_allergy
st.session_state.drug_allergy = drug_allergy
st.session_state.congentital_disease = congentital_disease
#algorithm
age,gender,bmi = personal_check(age,weight,height,gender)
if food_allergy == 'ไม่แพ้':
food_allergy = ''
if drug_allergy == 'ไม่แพ้':
drug_allergy = ''
if congentital_disease == 'ไม่มี':
congentital_disease = ''
if congentital_disease == '':
queries = gender+age+bmi+food_allergy+drug_allergy
else:
queries = congentital_disease
#Bertopic search
sbert_searched = sbert_search(queries,data,corpus_embeddings)
st.session_state.sbert_searched_df = sbert_searched
st.session_state.queries = queries
st.session_state.state_p1 = 2
if st.session_state.state_p1 == 2:
with st.form('recommendations'):
st.markdown("<h1 style='text-align: center; color: black;'>📰บทความสำหรับคุณ😆</h1>", unsafe_allow_html=True)
st.write("---------------------------------------------------------------------------------------")
for i in range(len(st.session_state.sbert_searched_df)):
st.header(str(i+1)+'. '+st.session_state.sbert_searched_df.iloc[i]['title'])
st.markdown(f"[Page source (Click here.)]({st.session_state.sbert_searched_df.iloc[i].url})")
try:
banner_url = urllib.parse.quote(st.session_state.sbert_searched_df.iloc[i]['banner'], safe=':/')
response = requests.get(banner_url,timeout=5)
st.image(response.content)
except:
st.image('https://icon-library.com/images/no-photo-icon/no-photo-icon-1.jpg')
finally:
st.write("---------------------------------------------------------------------------------------")
st.form_submit_button('Submit',on_click=set_state_p1,args=(0,))
def page2_search_engine():
st.title("Search engine")
with st.form('queries'):
queries = st.text_input('คำหรือหัวข้อที่ต้องการค้นหา')
st.form_submit_button(on_click=set_state_p2,args=(1,))
if st.session_state.state_p2 == 1:
sbert_searched = sbert_search(queries,data,corpus_embeddings)
st.session_state.sbert_searched_df_p2 = sbert_searched
st.session_state.queries_p2 = queries
st.session_state.state_p2 = 2
if st.session_state.state_p2 == 2:
with st.form('recommendations'):
st.markdown("<h1 style='text-align: center; color: black;'>📰บทความสำหรับคุณ😆</h1>", unsafe_allow_html=True)
st.write("---------------------------------------------------------------------------------------")
for i in range(len(st.session_state.sbert_searched_df_p2)):
st.header(str(i+1)+'. '+st.session_state.sbert_searched_df_p2.iloc[i]['title'])
st.markdown(f"[Page source (Click here.)]({st.session_state.sbert_searched_df_p2.iloc[i].url})")
try:
banner_url = urllib.parse.quote(st.session_state.sbert_searched_df_p2.iloc[i]['banner'], safe=':/')
response = requests.get(banner_url,timeout=5)
st.image(response.content)
except:
st.image('https://icon-library.com/images/no-photo-icon/no-photo-icon-1.jpg')
finally:
st.write("---------------------------------------------------------------------------------------")
st.form_submit_button('Submit',on_click=set_state_p2,args=(0,))
#main
def main():
st.sidebar.title("Navigation")
page = st.sidebar.selectbox("Select a page:", ("Recommendation System", "Search Engine"))
if page == "Recommendation System":
st.session_state.current_page = 1
else:
st.session_state.current_page = 2
if page == "Recommendation System" and st.session_state.current_page == 1:
page1_recommendation()
elif page == "Search Engine" and st.session_state.current_page == 2:
page2_search_engine()
if __name__ == "__main__":
main() |