File size: 4,948 Bytes
ab98363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import streamlit as st
import pickle
from pymongo import MongoClient
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import requests
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from io import BytesIO
import urllib.parse
import math

sbert_model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')

try:
    client = MongoClient('mongodb://192.168.1.103:27017/')

    print("---Connenction Successful---")

    Recommendation_elderly = client['Recommendation_elderly']

    healthcare_articles = Recommendation_elderly['token']

except:
    raise KeyError('Connection Fail')

data = healthcare_articles.find()
data = pd.DataFrame(list(data))
data = data.drop_duplicates(subset=['url'])
data = data[data['title'] != '']
data = data.reset_index().drop(columns=['index'])
data = data.reset_index().drop(columns=['_id','index'])

with open('corpus_embeddings.pickle', 'rb') as file:
    corpus_embeddings = pickle.load(file)

def personal_check(age,weight,height,gender):

    #age check
    if age >= 60:
        age = 'ผู้สูงอายุ'
    else:
        age = 'วัยทำงาน'

    #gender check
    if gender == 'Female':
        gender = 'ผู้หญิง สตรี'
    else:
        gender = 'ผู้ชาย'

    #bmi check
    height_meters = height / 100  

    bmi = weight / (height_meters ** 2)

    if bmi >= 30:
        bmi = 'อ้วนมาก'
    elif bmi >= 23 and bmi <30:
        bmi = 'อ้วน'
    elif bmi >= 18.5 and bmi <23:
        bmi = ''
    else:
        bmi = 'ผอม'
    
    return age,gender,bmi

def sbert_search(queries):

    global sbert_model,corpus_embeddings,data

    index_lst = []
    score_lst = []

    for query in queries:
        query_embedding = sbert_model.encode(query, convert_to_tensor=True)
        hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=15)
        hits = hits[0]
        for hit in hits:
            index_lst.append(hit['corpus_id'])
            score_lst.append(hit['score'])

    sbert_searched = data.iloc[index_lst]
    sbert_searched['score'] = score_lst
    sbert_searched = sbert_searched[['url','title','score','banner']]

    return sbert_searched

def visualize_articles_images(title,banner):
    # Calculate the number of rows and columns for the grid
    num_images = len(banner)
    num_rows = math.ceil(num_images / 3)
    num_cols = min(num_images, 3)
    fp = 'angsana.ttc'

    # Create a grid of subplots
    fig, axs = plt.subplots(num_rows, num_cols, figsize=(20, 20))

    # Iterate over the image URLs
    for i, url in enumerate(banner):
        # Calculate the subplot position
        row = i // num_cols
        col = i % num_cols
        axs[row, col].set_title(title.iloc[i],fontname='Tahoma',fontsize=16)

        if str(url) == 'nan':
            continue

        else:
            try:
                # Encode the URL using UTF-8
                encoded_url = urllib.parse.quote(url, safe=':/')

                # Download the image
                response = requests.get(encoded_url)
                img = mpimg.imread(BytesIO(response.content), format='jpg')

                # Calculate the subplot position
                row = i // num_cols
                col = i % num_cols

                # Plot the image
                axs[row, col].imshow(img)
                axs[row, col].axis('off')
            except:
                continue
            finally:
                pass

    return fig

def main():
    #header
    st.title("---ระบบแนะนำบทความสุขภาพ---")
    st.subheader("ให้คะแนนบทความหน่อยนะครับ:smile:")

    #personal information input
    age = st.slider("อายุ", 0, 100, 25)
    weight = st.number_input("น้ำหนัก (Kg.): ",30,120,step=1,value=30)
    height = st.number_input("ส่วนสูง (cm.): ",100,250,step=1,value=120)
    gender = st.selectbox('เพศ',('ชาย', 'หญิง'))
    food_allergy = st.selectbox('แพ้อาหาร?',('ไม่แพ้', 'แพ้อาหาร'))
    drug_allergy = st.selectbox('แพ้ยา?',('ไม่แพ้', 'แพ้ยา'))
    congentital_disease = st.text_input('โรคประจำตัวของคุณ')

    # Add a button
    if st.button("Click me"):
        age,gender,bmi = personal_check(age,weight,height,gender)

        if food_allergy == 'ไม่แพ้':
            food_allergy = ''
        if drug_allergy == 'ไม่แพ้':
            drug_allergy = ''

        queries = [gender+age+bmi+food_allergy+drug_allergy+congentital_disease]

        sbert_searched = sbert_search(queries)

        st.write(f"{queries}")
        st.pyplot(visualize_articles_images(sbert_searched['title'],sbert_searched['banner']))
    
if __name__ == "__main__":
    main()