File size: 9,136 Bytes
e328e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import streamlit as st
import pickle
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import numpy as np
import urllib.parse
import requests

#initial state
if 'state_p1' not in st.session_state:
    st.session_state.state_p1 = 0
if 'state_p2' not in st.session_state:
    st.session_state.state_p2 = 0
if 'age' not in st.session_state:
    st.session_state.age = 0
if 'weight' not in st.session_state:
    st.session_state.weight = 0
if 'height' not in st.session_state:
    st.session_state.height = 0
if 'gender' not in st.session_state:
    st.session_state.gender = 0
if 'food_allergy' not in st.session_state:
    st.session_state.food_allergy = 0
if 'drug_allergy' not in st.session_state:
    st.session_state.drug_allergy = 0
if 'congentital_disease' not in st.session_state:
    st.session_state.congentital_disease = 0
if 'queries' not in st.session_state:
    st.session_state.queries = None
if 'sbert_searched_df' not in st.session_state:
    st.session_state.sbert_searched_df = None
if 'queries_p2' not in st.session_state:
    st.session_state.queries_p2 = None
if 'sbert_searched_df_p2' not in st.session_state:
    st.session_state.sbert_searched_df_p2 = None
for i in range(10):
    if 'score_'+str(i+1) not in st.session_state:
        st.session_state['score_'+str(i+1)] = 'NA'
if 'current_page' not in st.session_state:
    st.session_state.current_page = 1

def set_state_p1(state):
    st.session_state.state_p1 = state

def set_state_p2(state):
    st.session_state.state_p2 = state

def split_text(text):
    return text.split(',')

#import data
sbert_model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')

data = pd.read_csv('articles_data.csv')

with open('corpus_embeddings.pickle', 'rb') as file:
    corpus_embeddings = pickle.load(file)

#local function
def personal_check(age,weight,height,gender):

    #age check
    if age >= 60:
        age = 'ผู้สูงอายุ'
    else:
        age = 'ทำงาน'

    #gender check
    if gender == 'หญิง':
        gender = 'ผู้หญิง'
    else:
        gender = 'ผู้ชาย'

    #bmi check
    height_meters = height / 100  

    bmi = weight / (height_meters ** 2)

    if bmi >= 30:
        bmi = 'อ้วนมาก'
    elif bmi >= 23 and bmi <30:
        bmi = 'อ้วน'
    elif bmi >= 18.5 and bmi <23:
        bmi = ''
    else:
        bmi = 'ผอม'
    
    return age,gender,bmi

def sbert_search(queries,data,embeddiing,sbert_model=sbert_model):

    index_lst = []
    score_lst = []

    query_embedding = sbert_model.encode(queries, convert_to_tensor=True)
    hits = util.semantic_search(query_embedding, embeddiing, top_k=10)
    hits = hits[0]
    for hit in hits:
        index_lst.append(hit['corpus_id'])
        score_lst.append(hit['score'])

    sbert_searched = data.iloc[index_lst]
    sbert_searched['score'] = score_lst

    return sbert_searched

def page1_recommendation():
    #header
    st.markdown("<h1 style='text-align: center; color: black;'>---ระบบแนะนำบทความสุขภาพ---</h1>", unsafe_allow_html=True)

    with st.form('user_info'):

        #personal information input
        age = st.slider("อายุ", 10, 100, 25)

        col1, col2 = st.columns(2)
        with col1:
            weight = st.number_input("น้ำหนัก (Kg.): ",30.0,120.0,step=1.0,value=50.0)
        with col2:
            height = st.number_input("ส่วนสูง (cm.): ",100.0,250.0,step=1.0,value=150.0)
        
        col3, col4, col5 = st.columns(3)
        with col3:
            gender = st.selectbox('เพศ',('ชาย', 'หญิง'))
        with col4:
            food_allergy = st.selectbox('แพ้อาหาร?',('ไม่แพ้', 'แพ้อาหาร'))
        with col5:
            drug_allergy = st.selectbox('แพ้ยา?',('ไม่แพ้', 'แพ้ยา'))
        congentital_disease = st.text_input('โรคประจำตัวของคุณ (ถ้าหากไม่มี ไม่ต้องกรอก หรือใส่ "ไม่มี")')

        st.form_submit_button(on_click=set_state_p1,args=(1,))

    if st.session_state.state_p1 == 1:

        #asign state
        st.session_state.age = age
        st.session_state.weight = weight
        st.session_state.height = height
        st.session_state.gender = gender
        st.session_state.food_allergy = food_allergy
        st.session_state.drug_allergy = drug_allergy
        st.session_state.congentital_disease = congentital_disease

        #algorithm
        age,gender,bmi = personal_check(age,weight,height,gender)

        if food_allergy == 'ไม่แพ้':
            food_allergy = ''
        if drug_allergy == 'ไม่แพ้':
            drug_allergy = ''
        if congentital_disease == 'ไม่มี':
            congentital_disease = ''

        if congentital_disease == '':
            queries = gender+age+bmi+food_allergy+drug_allergy
        else:
            queries = congentital_disease
        
        #Bertopic search
        sbert_searched = sbert_search(queries,data,corpus_embeddings)

        st.session_state.sbert_searched_df = sbert_searched
        st.session_state.queries = queries
        st.session_state.state_p1 = 2

    if st.session_state.state_p1 == 2:

        with st.form('recommendations'):
            st.markdown("<h1 style='text-align: center; color: black;'>📰บทความสำหรับคุณ😆</h1>", unsafe_allow_html=True)
            st.write("---------------------------------------------------------------------------------------")

            for i in range(len(st.session_state.sbert_searched_df)):
                st.header(str(i+1)+'. '+st.session_state.sbert_searched_df.iloc[i]['title'])
                st.markdown('**Keywords :** '+ st.session_state.sbert_searched_df.iloc[i]['vote_keywords'])
                st.markdown(f"[Page source (Click here.)]({st.session_state.sbert_searched_df.iloc[i].url})")

                try:
                    banner_url = urllib.parse.quote(st.session_state.sbert_searched_df.iloc[i]['banner'], safe=':/')
                    response = requests.get(banner_url,timeout=5)
                    st.image(response.content)
                except:
                    st.image('https://icon-library.com/images/no-photo-icon/no-photo-icon-1.jpg')
                finally:
                    st.write("---------------------------------------------------------------------------------------")
            
            st.form_submit_button('Submit',on_click=set_state_p1,args=(0,))

def page2_search_engine():
    st.title("Search engine")

    with st.form('queries'):
        queries = st.text_input('คำหรือหัวข้อที่ต้องการค้นหา')
        st.form_submit_button(on_click=set_state_p2,args=(1,))
    
    if st.session_state.state_p2 == 1:
        sbert_searched = sbert_search(queries,data,corpus_embeddings)

        st.session_state.sbert_searched_df_p2 = sbert_searched
        st.session_state.queries_p2 = queries
        st.session_state.state_p2 = 2

    if st.session_state.state_p2 == 2:
        with st.form('recommendations'):
            st.markdown("<h1 style='text-align: center; color: black;'>📰บทความสำหรับคุณ😆</h1>", unsafe_allow_html=True)
            st.write("---------------------------------------------------------------------------------------")

            for i in range(len(st.session_state.sbert_searched_df_p2)):
                st.header(str(i+1)+'. '+st.session_state.sbert_searched_df_p2.iloc[i]['title'])
                st.markdown('**Keywords :** '+ st.session_state.sbert_searched_df_p2.iloc[i]['vote_keywords'])
                st.markdown(f"[Page source (Click here.)]({st.session_state.sbert_searched_df_p2.iloc[i].url})")

                try:
                    banner_url = urllib.parse.quote(st.session_state.sbert_searched_df_p2.iloc[i]['banner'], safe=':/')
                    response = requests.get(banner_url,timeout=5)
                    st.image(response.content)
                except:
                    st.image('https://icon-library.com/images/no-photo-icon/no-photo-icon-1.jpg')
                finally:
                    st.write("---------------------------------------------------------------------------------------")
            
            st.form_submit_button('Submit',on_click=set_state_p2,args=(0,))

#main
def main():
    st.sidebar.title("Navigation")
    page = st.sidebar.selectbox("Select a page:", ("Recommendation System", "Search Engine"))
    
    if page == "Recommendation System":
        st.session_state.current_page = 1
    else:
        st.session_state.current_page = 2

    if page == "Recommendation System" and st.session_state.current_page == 1:
        page1_recommendation()
    elif page == "Search Engine" and st.session_state.current_page == 2:
        page2_search_engine()
    
if __name__ == "__main__":
    main()