import streamlit as st
import pickle
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import numpy as np
import urllib.parse
import requests
#initial state
if 'state_p1' not in st.session_state:
st.session_state.state_p1 = 0
if 'state_p2' not in st.session_state:
st.session_state.state_p2 = 0
if 'age' not in st.session_state:
st.session_state.age = 0
if 'weight' not in st.session_state:
st.session_state.weight = 0
if 'height' not in st.session_state:
st.session_state.height = 0
if 'gender' not in st.session_state:
st.session_state.gender = 0
if 'food_allergy' not in st.session_state:
st.session_state.food_allergy = 0
if 'drug_allergy' not in st.session_state:
st.session_state.drug_allergy = 0
if 'congentital_disease' not in st.session_state:
st.session_state.congentital_disease = 0
if 'queries' not in st.session_state:
st.session_state.queries = None
if 'sbert_searched_df' not in st.session_state:
st.session_state.sbert_searched_df = None
if 'queries_p2' not in st.session_state:
st.session_state.queries_p2 = None
if 'sbert_searched_df_p2' not in st.session_state:
st.session_state.sbert_searched_df_p2 = None
for i in range(10):
if 'score_'+str(i+1) not in st.session_state:
st.session_state['score_'+str(i+1)] = 'NA'
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
def set_state_p1(state):
st.session_state.state_p1 = state
def set_state_p2(state):
st.session_state.state_p2 = state
def split_text(text):
return text.split(',')
#import data
sbert_model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
data = pd.read_csv('articles_data.csv')
with open('corpus_embeddings.pickle', 'rb') as file:
corpus_embeddings = pickle.load(file)
#local function
def personal_check(age,weight,height,gender):
#age check
if age >= 60:
age = 'ผู้สูงอายุ'
else:
age = 'ทำงาน'
#gender check
if gender == 'หญิง':
gender = 'ผู้หญิง'
else:
gender = 'ผู้ชาย'
#bmi check
height_meters = height / 100
bmi = weight / (height_meters ** 2)
if bmi >= 30:
bmi = 'อ้วนมาก'
elif bmi >= 23 and bmi <30:
bmi = 'อ้วน'
elif bmi >= 18.5 and bmi <23:
bmi = ''
else:
bmi = 'ผอม'
return age,gender,bmi
def sbert_search(queries,data,embeddiing,sbert_model=sbert_model):
index_lst = []
score_lst = []
query_embedding = sbert_model.encode(queries, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, embeddiing, top_k=10)
hits = hits[0]
for hit in hits:
index_lst.append(hit['corpus_id'])
score_lst.append(hit['score'])
sbert_searched = data.iloc[index_lst]
sbert_searched['score'] = score_lst
return sbert_searched
def page1_recommendation():
#header
st.markdown("
---ระบบแนะนำบทความสุขภาพ---
", unsafe_allow_html=True)
with st.form('user_info'):
#personal information input
age = st.slider("อายุ", 10, 100, 25)
col1, col2 = st.columns(2)
with col1:
weight = st.number_input("น้ำหนัก (Kg.): ",30.0,120.0,step=1.0,value=50.0)
with col2:
height = st.number_input("ส่วนสูง (cm.): ",100.0,250.0,step=1.0,value=150.0)
col3, col4, col5 = st.columns(3)
with col3:
gender = st.selectbox('เพศ',('ชาย', 'หญิง'))
with col4:
food_allergy = st.selectbox('แพ้อาหาร?',('ไม่แพ้', 'แพ้อาหาร'))
with col5:
drug_allergy = st.selectbox('แพ้ยา?',('ไม่แพ้', 'แพ้ยา'))
congentital_disease = st.text_input('โรคประจำตัวของคุณ (ถ้าหากไม่มี ไม่ต้องกรอก หรือใส่ "ไม่มี")')
st.form_submit_button(on_click=set_state_p1,args=(1,))
if st.session_state.state_p1 == 1:
#asign state
st.session_state.age = age
st.session_state.weight = weight
st.session_state.height = height
st.session_state.gender = gender
st.session_state.food_allergy = food_allergy
st.session_state.drug_allergy = drug_allergy
st.session_state.congentital_disease = congentital_disease
#algorithm
age,gender,bmi = personal_check(age,weight,height,gender)
if food_allergy == 'ไม่แพ้':
food_allergy = ''
if drug_allergy == 'ไม่แพ้':
drug_allergy = ''
if congentital_disease == 'ไม่มี':
congentital_disease = ''
if congentital_disease == '':
queries = gender+age+bmi+food_allergy+drug_allergy
else:
queries = congentital_disease
#Bertopic search
sbert_searched = sbert_search(queries,data,corpus_embeddings)
st.session_state.sbert_searched_df = sbert_searched
st.session_state.queries = queries
st.session_state.state_p1 = 2
if st.session_state.state_p1 == 2:
with st.form('recommendations'):
st.markdown("📰บทความสำหรับคุณ😆
", unsafe_allow_html=True)
st.write("---------------------------------------------------------------------------------------")
for i in range(len(st.session_state.sbert_searched_df)):
st.header(str(i+1)+'. '+st.session_state.sbert_searched_df.iloc[i]['title'])
st.markdown('**Keywords :** '+ st.session_state.sbert_searched_df.iloc[i]['vote_keywords'])
st.markdown(f"[Page source (Click here.)]({st.session_state.sbert_searched_df.iloc[i].url})")
try:
banner_url = urllib.parse.quote(st.session_state.sbert_searched_df.iloc[i]['banner'], safe=':/')
response = requests.get(banner_url,timeout=5)
st.image(response.content)
except:
st.image('https://icon-library.com/images/no-photo-icon/no-photo-icon-1.jpg')
finally:
st.write("---------------------------------------------------------------------------------------")
st.form_submit_button('Submit',on_click=set_state_p1,args=(0,))
def page2_search_engine():
st.title("Search engine")
with st.form('queries'):
queries = st.text_input('คำหรือหัวข้อที่ต้องการค้นหา')
st.form_submit_button(on_click=set_state_p2,args=(1,))
if st.session_state.state_p2 == 1:
sbert_searched = sbert_search(queries,data,corpus_embeddings)
st.session_state.sbert_searched_df_p2 = sbert_searched
st.session_state.queries_p2 = queries
st.session_state.state_p2 = 2
if st.session_state.state_p2 == 2:
with st.form('recommendations'):
st.markdown("📰บทความสำหรับคุณ😆
", unsafe_allow_html=True)
st.write("---------------------------------------------------------------------------------------")
for i in range(len(st.session_state.sbert_searched_df_p2)):
st.header(str(i+1)+'. '+st.session_state.sbert_searched_df_p2.iloc[i]['title'])
st.markdown('**Keywords :** '+ st.session_state.sbert_searched_df_p2.iloc[i]['vote_keywords'])
st.markdown(f"[Page source (Click here.)]({st.session_state.sbert_searched_df_p2.iloc[i].url})")
try:
banner_url = urllib.parse.quote(st.session_state.sbert_searched_df_p2.iloc[i]['banner'], safe=':/')
response = requests.get(banner_url,timeout=5)
st.image(response.content)
except:
st.image('https://icon-library.com/images/no-photo-icon/no-photo-icon-1.jpg')
finally:
st.write("---------------------------------------------------------------------------------------")
st.form_submit_button('Submit',on_click=set_state_p2,args=(0,))
#main
def main():
st.sidebar.title("Navigation")
page = st.sidebar.selectbox("Select a page:", ("Recommendation System", "Search Engine"))
if page == "Recommendation System":
st.session_state.current_page = 1
else:
st.session_state.current_page = 2
if page == "Recommendation System" and st.session_state.current_page == 1:
page1_recommendation()
elif page == "Search Engine" and st.session_state.current_page == 2:
page2_search_engine()
if __name__ == "__main__":
main()