Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,13 +9,25 @@ warnings.filterwarnings("ignore")
|
|
9 |
#dowload file
|
10 |
|
11 |
#read files
|
12 |
-
data = pd.read_csv('
|
13 |
-
data = data[['location','date','new_cases','total_cases','new_deaths','total_deaths']]
|
14 |
|
|
|
15 |
#preprocessiong data
|
16 |
all_location = {}
|
17 |
-
for i in data['
|
18 |
-
all_location[i] = data[data['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# SIR model differential equations.
|
21 |
def deriv(x, t, beta, gamma):
|
@@ -70,17 +82,16 @@ def plotdata(t, s, i,r,R0, e=None):
|
|
70 |
#final model
|
71 |
def SIR(country,t_infective):
|
72 |
# parameter values
|
73 |
-
R0 = (all_location[country]['new_cases'].sum()/len(all_location[country]['date'].unique()))/t_infective
|
74 |
t_infective = t_infective
|
|
|
|
|
|
|
75 |
|
76 |
# initial number of infected and recovered individuals
|
77 |
-
i_initial =
|
78 |
r_initial = 0.00
|
79 |
s_initial = 1 - i_initial - r_initial
|
80 |
-
|
81 |
-
gamma = 1/t_infective
|
82 |
-
beta = R0*gamma
|
83 |
-
|
84 |
t = np.linspace(0, 100, 1000)
|
85 |
x_initial = s_initial, i_initial, r_initial
|
86 |
soln = odeint(deriv, x_initial, t, args=(beta, gamma))
|
@@ -96,14 +107,11 @@ def main():
|
|
96 |
with st.form("questionaire"):
|
97 |
country = st.selectbox("Country",data['location'].unique())# user's input
|
98 |
recovery = st.slider("How long Monkeypox recover?", 21, 31, 21)# user's input
|
99 |
-
|
100 |
# clicked==True only when the button is clicked
|
101 |
clicked = st.form_submit_button("Show Graph")
|
102 |
if clicked:
|
103 |
-
|
104 |
-
#show total cases graph
|
105 |
-
all_location[country]['total_cases'].plot()
|
106 |
-
|
107 |
# Show SIR
|
108 |
SIR_param = SIR(country,recovery)
|
109 |
|
|
|
9 |
#dowload file
|
10 |
|
11 |
#read files
|
12 |
+
data = pd.read_csv('owid-monkeypox-data.csv')
|
13 |
+
data = data[['location','iso_code','date','new_cases','total_cases','new_deaths','total_deaths']]
|
14 |
|
15 |
+
pop = pd.read_csv('API_SP.POP.TOTL_DS2_en_csv_v2_4578059.csv')
|
16 |
#preprocessiong data
|
17 |
all_location = {}
|
18 |
+
for i in data['iso_code'].unique():
|
19 |
+
all_location[i] = data[data['iso_code'] == i].reset_index(drop=True)
|
20 |
+
|
21 |
+
popu = pop[['Country Code','2021']].to_dict('index')
|
22 |
+
pop_dict = {}
|
23 |
+
for i in popu.values():
|
24 |
+
pop_dict[i['Country Code']] = i['2021']
|
25 |
+
|
26 |
+
pop_dict['GLP'] = 400000
|
27 |
+
pop_dict['MTQ'] = 376480
|
28 |
+
pop_dict['OWID_WRL'] = 7836630792
|
29 |
+
|
30 |
+
code = dict(data.groupby('location')['iso_code'].unique())
|
31 |
|
32 |
# SIR model differential equations.
|
33 |
def deriv(x, t, beta, gamma):
|
|
|
82 |
#final model
|
83 |
def SIR(country,t_infective):
|
84 |
# parameter values
|
|
|
85 |
t_infective = t_infective
|
86 |
+
gamma = 1/t_infective
|
87 |
+
beta = (all_location[country]['new_cases'].sum()/pop_dict[country])/len(all_location[country]['date'].unique())
|
88 |
+
R0 = beta/gamma
|
89 |
|
90 |
# initial number of infected and recovered individuals
|
91 |
+
i_initial = all_location[country]['new_cases'].sum()/pop_dict[country]
|
92 |
r_initial = 0.00
|
93 |
s_initial = 1 - i_initial - r_initial
|
94 |
+
|
|
|
|
|
|
|
95 |
t = np.linspace(0, 100, 1000)
|
96 |
x_initial = s_initial, i_initial, r_initial
|
97 |
soln = odeint(deriv, x_initial, t, args=(beta, gamma))
|
|
|
107 |
with st.form("questionaire"):
|
108 |
country = st.selectbox("Country",data['location'].unique())# user's input
|
109 |
recovery = st.slider("How long Monkeypox recover?", 21, 31, 21)# user's input
|
110 |
+
country = code[country][0]
|
111 |
# clicked==True only when the button is clicked
|
112 |
clicked = st.form_submit_button("Show Graph")
|
113 |
if clicked:
|
114 |
+
|
|
|
|
|
|
|
115 |
# Show SIR
|
116 |
SIR_param = SIR(country,recovery)
|
117 |
|