Spaces:
Sleeping
Sleeping
Upload App.py
Browse files
App.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import numpy as np
|
4 |
+
from scipy.integrate import odeint
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
#dowload file
|
8 |
+
!wget https://raw.githubusercontent.com/owid/monkeypox/main/owid-monkeypox-data.csv
|
9 |
+
|
10 |
+
#read files
|
11 |
+
data = pd.read_csv('owid-monkeypox-data.csv')
|
12 |
+
data = data[['location','date','new_cases','total_cases','new_deaths','total_deaths']]
|
13 |
+
|
14 |
+
#preprocessiong data
|
15 |
+
all_location = {}
|
16 |
+
for i in data['location'].unique():
|
17 |
+
all_location[i] = data[data['location'] == i].reset_index(drop=True)
|
18 |
+
|
19 |
+
# SIR model differential equations.
|
20 |
+
def deriv(x, t, beta, gamma):
|
21 |
+
s, i, r = x
|
22 |
+
dsdt = -beta * s * i
|
23 |
+
didt = beta * s * i - gamma * i
|
24 |
+
drdt = gamma * i
|
25 |
+
return [dsdt, didt, drdt]
|
26 |
+
|
27 |
+
#plot model
|
28 |
+
def plotdata(t, s, i, e=None):
|
29 |
+
# plot the data
|
30 |
+
fig = plt.figure(figsize=(12,6))
|
31 |
+
ax = [fig.add_subplot(221, axisbelow=True),
|
32 |
+
fig.add_subplot(223),
|
33 |
+
fig.add_subplot(122)]
|
34 |
+
|
35 |
+
ax[0].plot(t, s, lw=3, label='Fraction Susceptible')
|
36 |
+
ax[0].plot(t, i, lw=3, label='Fraction Infective')
|
37 |
+
ax[0].plot(t, r, lw=3, label='Recovered')
|
38 |
+
ax[0].set_title('Susceptible and Recovered Populations')
|
39 |
+
ax[0].set_xlabel('Time /days')
|
40 |
+
ax[0].set_ylabel('Fraction')
|
41 |
+
|
42 |
+
ax[1].plot(t, i, lw=3, label='Infective')
|
43 |
+
ax[1].set_title('Infectious Population')
|
44 |
+
if e is not None: ax[1].plot(t, e, lw=3, label='Exposed')
|
45 |
+
ax[1].set_ylim(0, 1.0)
|
46 |
+
ax[1].set_xlabel('Time /days')
|
47 |
+
ax[1].set_ylabel('Fraction')
|
48 |
+
|
49 |
+
ax[2].plot(s, i, lw=3, label='s, i trajectory')
|
50 |
+
ax[2].plot([1/R0, 1/R0], [0, 1], '--', lw=3, label='di/dt = 0')
|
51 |
+
ax[2].plot(s[0], i[0], '.', ms=20, label='Initial Condition')
|
52 |
+
ax[2].plot(s[-1], i[-1], '.', ms=20, label='Final Condition')
|
53 |
+
ax[2].set_title('State Trajectory')
|
54 |
+
ax[2].set_aspect('equal')
|
55 |
+
ax[2].set_ylim(0, 1.05)
|
56 |
+
ax[2].set_xlim(0, 1.05)
|
57 |
+
ax[2].set_xlabel('Susceptible')
|
58 |
+
ax[2].set_ylabel('Infectious')
|
59 |
+
|
60 |
+
for a in ax:
|
61 |
+
a.grid(True)
|
62 |
+
a.legend()
|
63 |
+
|
64 |
+
plt.tight_layout()
|
65 |
+
|
66 |
+
#final model
|
67 |
+
def SIR(country,t_infective):
|
68 |
+
# parameter values
|
69 |
+
R0 = (all_location[country]['new_cases'].sum()/len(all_location[country]['date'].unique()))/t_infective
|
70 |
+
t_infective = t_infective
|
71 |
+
|
72 |
+
# initial number of infected and recovered individuals
|
73 |
+
i_initial = 1/20000
|
74 |
+
r_initial = 0.00
|
75 |
+
s_initial = 1 - i_initial - r_initial
|
76 |
+
|
77 |
+
gamma = 1/t_infective
|
78 |
+
beta = R0*gamma
|
79 |
+
|
80 |
+
t = np.linspace(0, 100, 1000)
|
81 |
+
x_initial = s_initial, i_initial, r_initial
|
82 |
+
soln = odeint(deriv, x_initial, t, args=(beta, gamma))
|
83 |
+
s, i, r = soln.T
|
84 |
+
e = None
|
85 |
+
|
86 |
+
plotdata(t, s, i)
|
87 |
+
|
88 |
+
return R0,t_infective,gamma,beta
|
89 |
+
|
90 |
+
def main():
|
91 |
+
st.title("SIR Model for Monkeypox")
|
92 |
+
|
93 |
+
with st.form("questionaire"):
|
94 |
+
country = st.selectbox("Country")# user's input
|
95 |
+
recovery = st.slider("How long Monkeypox recover?", 21, 31, 21)# user's input
|
96 |
+
|
97 |
+
# clicked==True only when the button is clicked
|
98 |
+
clicked = st.form_submit_button("Show Graph")
|
99 |
+
if clicked:
|
100 |
+
|
101 |
+
#show total cases graph
|
102 |
+
all_location[country]['total_cases'].plot()
|
103 |
+
|
104 |
+
# Show SIR
|
105 |
+
SIR_param = SIR(country,recovery)
|
106 |
+
|
107 |
+
st.success("SIR model parameters for "+str(country)+" is")
|
108 |
+
st.success("R0 = "+str(SIR_param[0]))
|
109 |
+
st.success("Beta = "+str(SIR_param[3]))
|
110 |
+
st.success("Gamma = "+str(SIR_param[2]))
|
111 |
+
|
112 |
+
# Run main()
|
113 |
+
if __name__ == "__main__":
|
114 |
+
main()
|