Jiranuwat commited on
Commit
bbe1f90
·
1 Parent(s): 4d22d56

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -165
app.py DELETED
@@ -1,165 +0,0 @@
1
- import pandas as pd
2
- import streamlit as st
3
- import numpy as np
4
- from scipy.integrate import odeint
5
- import matplotlib.pyplot as plt
6
- from sklearn.metrics import mean_absolute_percentage_error
7
- import warnings
8
- warnings.filterwarnings("ignore")
9
-
10
- #read files
11
- data = pd.read_csv('owid-monkeypox-data.csv')
12
- data = data[['location','iso_code','date','new_cases','total_cases','new_deaths','total_deaths']]
13
-
14
- pop = pd.read_csv('API_SP.POP.TOTL_DS2_en_csv_v2_4578059.csv')
15
- #preprocessiong data
16
- all_location = {}
17
- for i in data['iso_code'].unique():
18
- all_location[i] = data[data['iso_code'] == i].reset_index(drop=True)
19
-
20
- popu = pop[['Country Code','2021']].to_dict('index')
21
- pop_dict = {}
22
- for i in popu.values():
23
- pop_dict[i['Country Code']] = i['2021']
24
-
25
- pop_dict['GLP'] = 400000
26
- pop_dict['MTQ'] = 376480
27
- pop_dict['OWID_WRL'] = 7836630792
28
-
29
- code = dict(data.groupby('location')['iso_code'].unique())
30
-
31
- # SIR model differential equations.
32
- def deriv(x, t, beta, gamma):
33
- s, i, r = x
34
- dsdt = -beta * s * i
35
- didt = beta * s * i - gamma * i
36
- drdt = gamma * i
37
- return [dsdt, didt, drdt]
38
-
39
- #plot model
40
- def plotdata(t, s, i,r,R0, e=None):
41
- # plot the data
42
- fig = plt.figure(figsize=(12,6))
43
- ax = [fig.add_subplot(221, axisbelow=True),
44
- fig.add_subplot(223),
45
- fig.add_subplot(122)]
46
-
47
- ax[0].plot(t, s, lw=3, label='Fraction Susceptible')
48
- ax[0].plot(t, i, lw=3, label='Fraction Infective')
49
- ax[0].plot(t, r, lw=3, label='Recovered')
50
- ax[0].set_title('Susceptible and Recovered Populations')
51
- ax[0].set_xlabel('Time /days')
52
- ax[0].set_ylabel('Fraction')
53
-
54
- ax[1].plot(t, i, lw=3, label='Infective')
55
- ax[1].set_title('Infectious Population')
56
- if e is not None: ax[1].plot(t, e, lw=3, label='Exposed')
57
- ax[1].set_ylim(0, 1.0)
58
- ax[1].set_xlabel('Time /days')
59
- ax[1].set_ylabel('Fraction')
60
-
61
- ax[2].plot(s, i, lw=3, label='s, i trajectory')
62
- ax[2].plot([1/R0, 1/R0], [0, 1], '--', lw=3, label='di/dt = 0')
63
- ax[2].plot(s[0], i[0], '.', ms=20, label='Initial Condition')
64
- ax[2].plot(s[-1], i[-1], '.', ms=20, label='Final Condition')
65
- ax[2].set_title('State Trajectory')
66
- ax[2].set_aspect('equal')
67
- ax[2].set_ylim(0, 1.05)
68
- ax[2].set_xlim(0, 1.05)
69
- ax[2].set_xlabel('Susceptible')
70
- ax[2].set_ylabel('Infectious')
71
-
72
- for a in ax:
73
- a.grid(True)
74
- a.legend()
75
-
76
- plt.tight_layout()
77
-
78
- return fig
79
-
80
- def compare_plt(country,i,pop):
81
- fig = plt.figure(figsize=(12,6))
82
- ax = [fig.add_subplot(121, axisbelow=True),fig.add_subplot(122)]
83
- ax[0].set_title('Monkeypox confirmed cases')
84
- ax[0].plot(all_location[country]['total_cases'],lw=3,label='Infective')
85
- ax[0].set_xlabel('Days')
86
- ax[0].set_ylabel('Number of cases')
87
- ax[0].legend()
88
-
89
- scaler = all_location[country]['total_cases'].apply(lambda x : x/pop)
90
- ax[1].set_title('Monkeypox confirmed cases compare with model')
91
- ax[1].plot(scaler,lw=3,label='Real Infective')
92
- ax[1].plot(i,lw=3,label='SIR model Infective')
93
- ax[1].set_ylim(0,0.00005)
94
- ax[1].set_xlim(0,200)
95
- ax[1].set_xlabel('Days')
96
- ax[1].set_ylabel('Fraction Number of cases')
97
- ax[1].legend()
98
- plt.tight_layout()
99
-
100
- return fig
101
-
102
- #final model
103
- def SIR(country,R0,t_infective,pop):
104
- #R0 = 0.57 - 1.25
105
-
106
- # parameter values
107
- R0 = R0
108
- t_infective = t_infective
109
-
110
- # initial number of infected and recovered individuals
111
- i_initial = all_location[country]['total_cases'].iloc[0]/pop
112
- r_initial = 0.00
113
- s_initial = 1 - i_initial - r_initial
114
-
115
- gamma = 1/t_infective
116
- beta = R0*gamma
117
-
118
- t = np.linspace(0, 3000, 3000)
119
- x_initial = s_initial, i_initial, r_initial
120
- soln = odeint(deriv, x_initial, t, args=(beta, gamma))
121
- s, i, r = soln.T
122
- e = None
123
-
124
- scaler = all_location[country]['total_cases'].apply(lambda x : x/pop)
125
- rangee = len(all_location[country]['total_cases'])
126
- rmpe = mean_absolute_percentage_error(scaler,i[0:rangee])*100
127
-
128
-
129
- return R0,t_infective,beta,gamma,rmpe,plotdata(t, s, i,r,R0),compare_plt(country,i,pop)
130
-
131
- def main():
132
- st.title("SIR Model for Monkeypox in Thailand")
133
- st.subheader("Latest updated : 10/02/2023")
134
- st.subheader("Reference : https://jckantor.github.io/CBE30338/03.09-COVID-19.html")
135
- st.caption("Display graph of SIR model of monkeypox and comparison between the model and actual data. Try to find the best R0 that fit for the actual data (lowest MAPE).")
136
-
137
- with st.form("questionaire"):
138
- recovery = st.slider("How long Monkeypox last until recovery(days)? ", 14, 31, 21)
139
- R0 = st.slider("Basic Reproduction Number (R0)", 0.57, 3.00, 0.57)# user's input
140
- country_code = code["Thailand"][0]
141
- pop = pop_dict[country_code]
142
-
143
- # clicked==True only when the button is clicked
144
- clicked = st.form_submit_button("Show Graph")
145
- if clicked:
146
-
147
- # Show SIR
148
- SIR_param = SIR(country_code,R0,recovery,pop)
149
-
150
- if SIR_param[0] <= 1:
151
- a = 'No epidemic.'
152
- else:
153
- a = 'Epidemic has began.'
154
-
155
- st.pyplot(SIR_param[-2])
156
- st.pyplot(SIR_param[-1])
157
- st.success("SIR model parameters of Thailand "+" is")
158
- st.success("R0 (Basic Reproduction Number) = "+str(SIR_param[0])+' '+a)
159
- st.success("Beta (Rate of transmission) = "+str(round(SIR_param[2],3)))
160
- st.success("Gamma (Rate of Recovery) = "+str(round(SIR_param[3],3)))
161
- st.success("MAPE = "+str(round(SIR_param[4],3))+"%")
162
-
163
- # Run main()
164
- if __name__ == "__main__":
165
- main()