File size: 22,212 Bytes
c32f190 70528e9 c32f190 1da325f c32f190 4c7fffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
import math
import time
import numpy
import random
import threading
import gradio as gr
from PIL import Image, ImageOps
from moviepy import VideoFileClip
from datetime import datetime, timedelta
from huggingface_hub import hf_hub_download, snapshot_download
import insightface
from insightface.app import FaceAnalysis
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
import torch
from diffusers import CogVideoXDPMScheduler
from diffusers.utils import load_image
from diffusers.image_processor import VaeImageProcessor
from diffusers.training_utils import free_memory
from util.utils import *
from util.rife_model import load_rife_model, rife_inference_with_latents
from models.utils import process_face_embeddings
from models.transformer_consisid import ConsisIDTransformer3DModel
from models.pipeline_consisid import ConsisIDPipeline
from models.eva_clip import create_model_and_transforms
from models.eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from models.eva_clip.utils_qformer import resize_numpy_image_long
device = "cuda" if torch.cuda.is_available() else "cpu"
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview")
model_path = "BestWishYsh/ConsisID-preview"
lora_path = None
lora_rank = 128
dtype = torch.bfloat16
if os.path.exists(os.path.join(model_path, "transformer_ema")):
subfolder = "transformer_ema"
else:
subfolder = "transformer"
transformer = ConsisIDTransformer3DModel.from_pretrained_cus(model_path, subfolder=subfolder)
scheduler = CogVideoXDPMScheduler.from_pretrained(model_path, subfolder="scheduler")
try:
is_kps = transformer.config.is_kps
except:
is_kps = False
# 1. load face helper models
face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=device,
model_rootpath=os.path.join(model_path, "face_encoder")
)
face_helper.face_parse = None
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device, model_rootpath=os.path.join(model_path, "face_encoder"))
face_helper.face_det.eval()
face_helper.face_parse.eval()
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"), force_custom_clip=True)
face_clip_model = model.visual
face_clip_model.eval()
eva_transform_mean = getattr(face_clip_model, 'image_mean', OPENAI_DATASET_MEAN)
eva_transform_std = getattr(face_clip_model, 'image_std', OPENAI_DATASET_STD)
if not isinstance(eva_transform_mean, (list, tuple)):
eva_transform_mean = (eva_transform_mean,) * 3
if not isinstance(eva_transform_std, (list, tuple)):
eva_transform_std = (eva_transform_std,) * 3
eva_transform_mean = eva_transform_mean
eva_transform_std = eva_transform_std
face_main_model = FaceAnalysis(name='antelopev2', root=os.path.join(model_path, "face_encoder"), providers=['CUDAExecutionProvider'])
handler_ante = insightface.model_zoo.get_model(f'{model_path}/face_encoder/models/antelopev2/glintr100.onnx', providers=['CUDAExecutionProvider'])
face_main_model.prepare(ctx_id=0, det_size=(640, 640))
handler_ante.prepare(ctx_id=0)
face_clip_model.to(device, dtype=dtype)
face_helper.face_det.to(device)
face_helper.face_parse.to(device)
transformer.to(device, dtype=dtype)
free_memory()
pipe = ConsisIDPipeline.from_pretrained(model_path, transformer=transformer, scheduler=scheduler, torch_dtype=dtype)
# If you're using with lora, add this code
if lora_path:
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
pipe.fuse_lora(lora_scale=1 / lora_rank)
scheduler_args = {}
if "variance_type" in pipe.scheduler.config:
variance_type = pipe.scheduler.config.variance_type
if variance_type in ["learned", "learned_range"]:
variance_type = "fixed_small"
scheduler_args["variance_type"] = variance_type
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args)
pipe.to(device)
os.makedirs("./output", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)
upscale_model = load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
frame_interpolation_model = load_rife_model("model_rife")
def infer(
prompt: str,
image_input: str,
num_inference_steps: int,
guidance_scale: float,
seed: int = 42,
progress=gr.Progress(track_tqdm=True),
):
if seed == -1:
seed = random.randint(0, 2**8 - 1)
id_image = np.array(ImageOps.exif_transpose(Image.fromarray(image_input)).convert("RGB"))
id_image = resize_numpy_image_long(id_image, 1024)
id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper, face_clip_model, handler_ante,
eva_transform_mean, eva_transform_std,
face_main_model, device, dtype, id_image,
original_id_image=id_image, is_align_face=True,
cal_uncond=False)
if is_kps:
kps_cond = face_kps
else:
kps_cond = None
tensor = align_crop_face_image.cpu().detach()
tensor = tensor.squeeze()
tensor = tensor.permute(1, 2, 0)
tensor = tensor.numpy() * 255
tensor = tensor.astype(np.uint8)
image = ImageOps.exif_transpose(Image.fromarray(tensor))
prompt = prompt.strip('"')
generator = torch.Generator(device).manual_seed(seed) if seed else None
video_pt = pipe(
prompt=prompt,
image=image,
num_videos_per_prompt=1,
num_inference_steps=num_inference_steps,
num_frames=49,
use_dynamic_cfg=False,
guidance_scale=guidance_scale,
generator=generator,
id_vit_hidden=id_vit_hidden,
id_cond=id_cond,
kps_cond=kps_cond,
output_type="pt",
).frames
free_memory()
return (video_pt, seed)
def convert_to_gif(video_path):
clip = VideoFileClip(video_path)
gif_path = video_path.replace(".mp4", ".gif")
clip.write_gif(gif_path, fps=8)
return gif_path
def delete_old_files():
while True:
now = datetime.now()
cutoff = now - timedelta(minutes=10)
directories = ["./output", "./gradio_tmp"]
for directory in directories:
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if os.path.isfile(file_path):
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
if file_mtime < cutoff:
os.remove(file_path)
time.sleep(600)
threading.Thread(target=delete_old_files, daemon=True).start()
examples_images = [
["asserts/example_images/1.png", "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon."],
["asserts/example_images/2.png", "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel."],
["asserts/example_images/3.png", "The video depicts a man sitting at an office desk, engaged in his work. He is dressed in a formal suit and appears to be focused on his computer screen. The office environment is well-organized, with shelves filled with binders and other office supplies neatly arranged. The man is holding a red cup, possibly containing a beverage, which he drinks from before setting it down on the desk. He then proceeds to type on the keyboard, indicating that he is working on something on his computer. The overall atmosphere of the video suggests a professional setting where the man is diligently working on his tasks."]
]
with gr.Blocks() as demo:
gr.Markdown("""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
ConsisID Space🤗
</div>
<div style="text-align: center;">
<a href="https://huggingface.co/BestWishYsh/ConsisID">🤗 Model Hub</a> |
<a href="https://huggingface.co/datasets/BestWishYsh/ConsisID-preview-Data">📚 Dataset</a> |
<a href="https://github.com/PKU-YuanGroup/ConsisID">🌐 Github</a> |
<a href="https://pku-yuangroup.github.io/ConsisID">📝 Page</a> |
<a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
</div>
<div style="text-align: center;display: flex;justify-content: center;align-items: center;margin-top: 1em;margin-bottom: .5em;">
<span>If the Space is too busy, duplicate it to use privately</span>
<a href="https://huggingface.co/spaces/BestWishYsh/ConsisID-Space?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" width="160" style="
margin-left: .75em;
"></a>
</div>
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
⚠️ This demo is for academic research and experiential use only.
</div>
""")
with gr.Row():
with gr.Column():
with gr.Accordion("IPT2V: Face Input", open=True):
image_input = gr.Image(label="Input Image (should contain clear face)")
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
with gr.Accordion("Examples", open=False):
examples_component_images = gr.Examples(
examples_images,
inputs=[image_input, prompt],
cache_examples=False,
)
with gr.Group():
with gr.Column():
with gr.Row():
seed_param = gr.Number(
label="Inference Seed (Enter a positive number, -1 for random)", value=42
)
with gr.Row():
enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
gr.Markdown(
"✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution)."
)
generate_button = gr.Button("🎬 Generate Video")
with gr.Column():
video_output = gr.Video(label="ConsisID Generate Video", width=720, height=480)
with gr.Row():
download_video_button = gr.File(label="📥 Download Video", visible=False)
download_gif_button = gr.File(label="📥 Download GIF", visible=False)
seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)
gr.Markdown("""
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
🎥 Video Gallery
</div>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>The video features a woman in exquisite hybrid armor adorned with iridescent gemstones, standing amidst gently falling cherry blossoms. Her piercing yet serene gaze hints at quiet determination, as a breeze catches a loose strand of her hair. She stands in a tranquil courtyard framed by moss-covered stone walls and wooden arches, with blossoms casting soft shadows on the ground. The petals swirl around her, adding a dreamlike quality, while the blurred backdrop emphasizes her poised figure. The scene conveys elegance, strength, and tranquil readiness, capturing a moment of peace before an upcoming challenge.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/97fa0710-4f14-4a6d-b6f7-f3a2e9f7486e" width="100%" controls autoplay loop></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge. The setting appears playful, with colorful toys scattered around and a soft rug underfoot, while sunlight streams through a nearby window, highlighting the fluttering cape and adding to the impression of heroism. The overall atmosphere is lighthearted and fun, with the baby's expressions capturing a mix of innocence and an adorable attempt at bravery, as if truly ready to save the day.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/90b547a3-247c-4bb0-abae-ba53483b7b6e" width="100%" controls autoplay loop></video>
</td>
</tr>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>The video features a man standing next to an airplane, engaged in a conversation on his cell phone. he is wearing sunglasses and a black top, and he appears to be talking seriously. The airplane has a green stripe running along its side, and there is a large engine visible behind his. The man seems to be standing near the entrance of the airplane, possibly preparing to board or just having disembarked. The setting suggests that he might be at an airport or a private airfield. The overall atmosphere of the video is professional and focused, with the man's attire and the presence of the airplane indicating a business or travel context.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/55680c58-de86-48b4-8d86-e9906a3185c3" width="100%" controls autoplay loop></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>The video features a woman with blonde hair standing on a beach near the water's edge. She is wearing a black swimsuit and appears to be enjoying her time by the sea. The sky above is clear with some clouds, and the ocean waves gently lap against the shore. The woman seems to be holding something white in her hand, possibly a piece of driftwood or a small object found on the beach. The overall atmosphere of the video is serene and relaxing, capturing the beauty of nature and the simple pleasure of being by the ocean.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/8d06e702-f80e-4cb2-abc2-b0f519ec3f11" width="100%" controls autoplay loop></video>
</td>
</tr>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>The video features a man sitting in a red armchair, enjoying a cup of coffee or tea. he is dressed in a light-colored outfit and has long dark-haired hair. The setting appears to be indoors, with large windows providing a view of a misty or foggy coastal landscape outside. The room has a modern design with geometric structures visible in the background. There is a small round table next to the armchair, also holding a cup. The overall atmosphere suggests a calm and serene moment, possibly during a cold or rainy day by the sea.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/ab9c655e-84c2-47ed-85d9-039a7f64adfe" width="100%" controls autoplay loop></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>The video shows a young boy sitting at a table, eating a piece of food. He appears to be enjoying his meal, as he takes a bite and chews it. The boy is wearing a blue shirt and has short hair. The background is dark, with some light coming from the left side of the frame. There is a straw visible on the right side of the frame, suggesting that there may be a drink next to the boy's plate. The overall atmosphere of the video seems casual and relaxed, with the focus on the boy's enjoyment of his food.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/8014b02e-e1c4-4df7-b7f3-cebfb01fa373" width="100%" controls autoplay loop></video>
</td>
</tr>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/e4bc3169-d3d4-46e2-a667-8b456ead9465" width="100%" controls autoplay loop></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>The video features a young man standing outdoors in a snowy park. he is wearing a colorful winter jacket with a floral pattern and a white knit hat. The background shows a snowy landscape with trees, benches, and a metal fence. The ground is covered in snow, and there is a light snowfall in the air. The man appears to be enjoying the winter weather, as he smiles and gives a thumbs-up gesture towards the camera. The overall atmosphere of the video is cheerful and festive, capturing the beauty of a snowy day in a park.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/e4e3e519-95d4-44e0-afa7-9a833f99e090" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
""")
@spaces.GPU
def generate(
prompt,
image_input,
seed_value,
scale_status,
rife_status,
progress=gr.Progress(track_tqdm=True)
):
latents, seed = infer(
prompt,
image_input,
num_inference_steps=50,
guidance_scale=7.0,
seed=seed_value,
progress=progress,
)
if scale_status:
latents = upscale_batch_and_concatenate(upscale_model, latents, device)
if rife_status:
latents = rife_inference_with_latents(frame_interpolation_model, latents)
batch_size = latents.shape[0]
batch_video_frames = []
for batch_idx in range(batch_size):
pt_image = latents[batch_idx]
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
batch_video_frames.append(image_pil)
video_path = save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
video_update = gr.update(visible=True, value=video_path)
gif_path = convert_to_gif(video_path)
gif_update = gr.update(visible=True, value=gif_path)
seed_update = gr.update(visible=True, value=seed)
return video_path, video_update, gif_update, seed_update
generate_button.click(
generate,
inputs=[prompt, image_input, seed_param, enable_scale, enable_rife],
outputs=[video_output, download_video_button, download_gif_button, seed_text],
)
if __name__ == "__main__":
demo.queue(max_size=15)
demo.launch(debug=True)
|