Spaces:
Runtime error
Runtime error
File size: 16,441 Bytes
3d1c096 f87e387 3d1c096 f87e387 3d1c096 cfbb0ad 3d1c096 5dddb18 cfbb0ad f87e387 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 5dddb18 460caa6 5dddb18 460caa6 f87e387 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 07cb2d5 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 460caa6 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 cfbb0ad 3d1c096 5dddb18 3d1c096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import openai
import gradio as gr
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.chains import LLMChain
from langchain_community.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
import pandas as pd
import os
import scipdf ## You need a Gorbid service available
import tabula ## You need to have the Java Tabula installed in the environment
from gradio import DataFrame
import asyncio
from transformers import pipeline
from dotenv import load_dotenv
import json
from src.extractor import Extractor
load_dotenv()
## You api key from vendors or hugginface
#openai.api_key=os.getenv("OPEN_AI_API_KEY")
#LLMClient = OpenAI(model_name='text-davinci-003', openai_api_key=openai.api_key,temperature=0)
extractor = Extractor()
print(os.getenv("OPEN_AI_API_KEY"))
# Define function to handle the Gradio interface
async def extraction(input_file, apikey, dimension):
# Build the chains
chain_incontext, chain_table = extractor.build_chains(apikey)
# Prepare the data
docsearch = await extractor.prepare_data(input_file, chain_table, apikey)
# Extract dimensions
if (dimension == "annotation"):
results, completeness_report = await extractor.get_annotation_dimension(docsearch,chain_incontext, retrieved_docs=10)
elif (dimension == "gathering"):
results, completeness_report = await extractor.get_gathering_dimension(docsearch,chain_incontext, retrieved_docs=10)
elif (dimension == "uses"):
results, completeness_report = await extractor.get_uses_dimension(docsearch,chain_incontext, retrieved_docs=10)
elif (dimension == "contrib"):
results, completeness_report = await extractor.get_contributors_dimension(docsearch,chain_incontext, retrieved_docs=10)
elif (dimension == "comp"):
results, completeness_report = await extractor.get_composition_dimension(docsearch,chain_incontext, retrieved_docs=10)
elif (dimension == "social"):
results, completeness_report = await extractor.get_social_concerns_dimension(docsearch,chain_incontext, retrieved_docs=10)
elif (dimension == "dist"):
results, completeness_report = await extractor.get_distribution_dimension(docsearch,chain_incontext, retrieved_docs=10)
# Get completeness report
#completeness_report = extractor.postprocessing(results)
return results, completeness_report
async def ui_extraction(input_file, apikey, dimension):
if (input_file == None):
raise gr.Error("Please upload a data paper")
if (input_file.name.split(".")[-1] != "pdf"):
raise gr.Error("This is not a data paper!, please upload it in .pdf format")
if (len(apikey) == 0):
raise gr.Error("Please inform your OpenAI Apikey")
file_name = input_file.name.split("/")[-1]
results, completeness_report = await extractor.extraction(file_name, input_file.name, apikey, dimension)
# Build results in the correct format for the Gradio front-end
results = pd.DataFrame(results, columns=['Dimension', 'Results'])
return results, gr.update(value=pd.DataFrame(completeness_report['report'],columns=['Completeness report: '+str(completeness_report['completeness'])+'%']), visible=True)
async def complete(input_file):
file_name = input_file.name.split("/")[-1]
# Build the chains
chain_incontext, chain_table = extractor.build_chains(apikey=os.getenv("OPEN_AI_API_KEY"))
# Prepare the data
docsearch = await extractor.prepare_data(file_name, input_file.name, chain_table, apikey=os.getenv("OPEN_AI_API_KEY"))
#Retrieve dimensions
results = await asyncio.gather(extractor.get_annotation_dimension(docsearch,chain_incontext, retrieved_docs=10),
extractor.get_gathering_dimension(docsearch,chain_incontext, retrieved_docs=10),
extractor.get_uses_dimension(docsearch,chain_incontext, retrieved_docs=10),
extractor.get_contributors_dimension(docsearch,chain_incontext, retrieved_docs=10),
extractor.get_composition_dimension(docsearch,chain_incontext, retrieved_docs=10),
extractor.get_social_concerns_dimension(docsearch,chain_incontext, retrieved_docs=10),
extractor.get_distribution_dimension(docsearch,chain_incontext, retrieved_docs=10))
# Get completeness report from the results
warnings = []
extracts = []
for result in results:
extracts.append(result[0])
warnings.append(gr.update(value=pd.DataFrame(result[1]['report'],columns=['Completeness report: '+str(result[1]['completeness'])+'%']), visible=True))
extracts.extend(warnings)
return extracts
## Building the layout of the app
css = """.table-wrap.scroll-hide.svelte-8hrj8a.no-wrap {
white-space: normal;
}
#component-7 .wrap.svelte-xwlu1w {
min-height: var(--size-40);
}
div#component-2 h2 {
color: var(--block-label-text-color);
text-align: center;
border-radius: 7px;
text-align: center;
margin: 0 15% 0 15%;
}
div#component-5 {
border: 1px solid var(--border-color-primary);
border-radius: 0 0px 10px 10px;
padding: 20px;
}
.gradio-container.gradio-container-3-26-0.svelte-ac4rv4.app {
max-width: 850px;
}
div#component-6 {
min-height: 150px;
}
button#component-17 {
color: var(--block-label-text-color);
}
.gradio-container.gradio-container-3-26-0.svelte-ac4rv4.app {
max-width: 1100px;
}
#component-9 .wrap.svelte-xwlu1w {
min-height: var(--size-40);
}
div#component-11 {
height: var(--size-40);
}
div#component-9 {
border: 1px solid grey;
border-radius: 10px;
padding: 3px;
text-align: center;
}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
with gr.Row():
gr.Markdown("## DataDoc Analyzer")
with gr.Row():
gr.Markdown("""Extract, in a structured manner, the **[general guidelines](https://knowingmachines.org/reading-list#dataset_documentation_practices)** from the ML community about dataset documentation practices from its scientific documentation. Study and analyze scientific data published in peer-review journals such as: **[Nature's Scientific Data](https://www.nature.com/sdata/)** and **[Data-in-Brief](https://www.data-in-brief.com)**. Here you have a **[complete list](https://zenodo.org/record/7082126#.ZDaf-OxBz0p)** of data journals suitable to be analyzed with this tool.
""")
with gr.Row():
with gr.Column():
fileinput = gr.File(label="Upload the dataset documentation"),
with gr.Column():
gr.Markdown(""" <h4 style=text-align:center>Instructions: </h4>
<b> ⤵ Try the examples </b> at the bottom
<b> then </b>
<b> ⇨ Set your API key </b> of OpenAI
<b> ⇦ Upload </b> your data paper (in PDF or TXT)
<b> ⇩ Click in get insights </b> in one tab!
""")
with gr.Column():
apikey_elem = gr.Text(label="OpenAI API key", type="password")
# gr.Markdown("""
# <h3> Improving your data and assesing your dataset documentation </h3>
# The generated warning also allows you quicly check the completeness of the documentation, and spotting gaps in the document
# <h3> Performing studies studies over scientific data </h3>
# If you need to analyze a large scale of documents, we provide an <strong>API</strong> that can be used programatically. Documentation on how to use it is at the bottom of the page. """)
with gr.Row():
with gr.Tab("Annotation"):
gr.Markdown("""In this dimension, you can get information regarding the annotation process of the data: Extract a description of the process and infer its type. Extract the labels and information about the annotation team, the infrastructure used to annotate the data, and the validation process applied to the labels.""")
result_anot = gr.DataFrame(headers=["dimension","result"],type="array",label="Results of the extraction:")
alerts_anot = gr.DataFrame(headers=["warnings"],type="array", visible=False)
button_annotation = gr.Button("Get the annotation process insights!")
with gr.Tab("Gathering"):
gr.Markdown("""In this dimension, we get information regarding the collection process of the data: We provide a description of the process and we infer its type from the documentation. Then we extract information about the collection team, the infrastructure used to collect the data and the sources. Also we get the timeframe of the data collection and its geolocalization.""")
result_gather = gr.DataFrame(headers=["dimension","result"],type="array",label="Results of the extraction:")
alerts_gather = gr.DataFrame(headers=["warnings"],type="array", visible=False)
button_gathering = gr.Button("Get the gathering process insights!")
with gr.Tab("Uses"):
gr.Markdown("""In this dimension, we extract the design intentios of the authors, we extract the purposes, gaps, and we infer the ML tasks (extracted form hugginface) the dataset is inteded for. Also we get the uses recomendation and the ML Benchmarks if the dataset have been tested with them""")
result_uses = gr.DataFrame(headers=["dimension","result"],type="array",label="Results of the extraction:")
alerts_uses = gr.DataFrame(headers=["warnings"],type="array", visible=False)
button_uses = gr.Button("Get the uses of the dataset!")
with gr.Tab("Contributors"):
gr.Markdown("""In this dimension, we extract all the contributors, funding information and maintenance of the dataset""")
result_contrib = gr.DataFrame(headers=["dimension","result"],type="array",label="Results of the extraction:")
alerts_contrib = gr.DataFrame(headers=["warnings"],type="array", visible=False)
button_contrib = gr.Button("Get the contributors of the dataset!")
with gr.Tab("Composition"):
gr.Markdown("""In this dimension, we extract the file structure, we identify the attributes of the dataset, the recommneded trainig splits and the relevant statistics (if provided in the documentation) """)
result_comp = gr.DataFrame(headers=["dimension","result"],type="array",label="Results of the extraction:")
alerts_comp = gr.DataFrame(headers=["warnings"],type="array", visible=False)
button_comp = gr.Button("Get the composition of the dataset!")
with gr.Tab("Social Concerns"):
gr.Markdown("""In this dimension, we extract social concerns regarding the representativeness of social groups, potential biases, sensitivity issues, and privacy issues. """)
result_social = gr.DataFrame(headers=["dimension","result"],type="array",label="Results of the extraction:")
alerts_social = gr.DataFrame(headers=["warnings"],type="array", visible=False)
button_social = gr.Button("Get the Social Cocerns!")
with gr.Tab("Distribution"):
gr.Markdown("""In this dimension, we aim to extract the legal conditions under the dataset is released) """)
result_distri = gr.DataFrame(headers=["dimension","result"],type="array",label="Results of the extraction:")
alerts_distribution = gr.DataFrame(headers=["warning"],type="array", visible=False)
button_dist = gr.Button("Get the Distribution!")
with gr.Row():
examples = gr.Examples(
examples=["sources/Nature-Scientific-Data/A whole-body FDG-PET:CT.pdf","sources/Nature-Scientific-Data/Lontar-Manuscripts.pdf"],
inputs=[fileinput[0]],
fn=complete,
outputs=[
result_anot,
result_gather,
result_uses,
result_contrib,
result_comp,
result_social,
result_distri,
alerts_anot,
alerts_gather,
alerts_uses,
alerts_contrib,
alerts_comp,
alerts_social,
alerts_distribution],
cache_examples=True)
button_complete = gr.Button("Get all the dimensions", visible=False)
allres = gr.Text(visible=False)
## Events of the apps
button_annotation.click(ui_extraction,inputs=[fileinput[0],apikey_elem,gr.State(value="annotation")],outputs=[result_anot,alerts_anot])
button_gathering.click(ui_extraction,inputs=[fileinput[0],apikey_elem,gr.State("gathering") ],outputs=[result_gather,alerts_gather])
button_uses.click(ui_extraction,inputs=[fileinput[0],apikey_elem,gr.State("uses") ],outputs=[result_uses,alerts_uses])
button_contrib.click(ui_extraction,inputs=[fileinput[0],apikey_elem,gr.State("contrib") ],outputs=[result_contrib,alerts_contrib])
button_comp.click(ui_extraction,inputs=[fileinput[0],apikey_elem,gr.State("comp") ],outputs=[result_comp,alerts_comp])
button_social.click(ui_extraction,inputs=[fileinput[0],apikey_elem,gr.State("social") ],outputs=[result_social,alerts_social])
button_dist.click(ui_extraction,inputs=[fileinput[0],apikey_elem,gr.State("dist") ],outputs=[result_distri,alerts_distribution])
## API endpoints
#api_annotation = gr.Button(visible=False)
#api_annotation.click(api_extraction,inputs=[fileinput[0],apikey_elem,gr.State(value="annotation")],outputs=[result_anot,alerts_anot], api_name="annotation")
#api_gathering = gr.Button(visible=False)
#api_gathering.click(api_extraction,inputs=[fileinput[0],apikey_elem,gr.State(value="gathering")],outputs=[result_anot,alerts_anot], api_name="gathering")
#api_uses = gr.Button(visible=False)
#api_uses.click(api_extraction,inputs=[fileinput[0],apikey_elem,gr.State(value="uses")],outputs=[result_anot,alerts_anot], api_name="uses")
# api_contrib = gr.Button(visible=False)
# api_contrib.click(api_extraction,inputs=[fileinput[0],apikey_elem,gr.State(value="contrib")],outputs=[result_anot,alerts_anot], api_name="contrib")
#api_comp = gr.Button(visible=False)
#api_comp.click(api_extraction,inputs=[fileinput[0],apikey_elem,gr.State(value="comp")],outputs=[result_anot,alerts_anot], api_name="composition")
#api_social = gr.Button(visible=False)
#api_social.click(api_extraction,inputs=[fileinput[0],apikey_elem,gr.State(value="social")],outputs=[result_anot,alerts_anot], api_name="social")
#api_dist = gr.Button(visible=False)
#api_dist.click(api_extraction,inputs=[fileinput[0],apikey_elem,gr.State(value="dist")],outputs=[result_anot,alerts_anot], api_name="dist")
#button_complete.click(api_extraction,inputs=[fileinput[0],apikey_elem,"annotation"],outputs=allres, api_name="annotation")
#button_complete.click(api_extraction,inputs=[fileinput[0],apikey_elem,"annotation"],outputs=allres, api_name="annotation")
#button_complete.click(api_extraction,inputs=[fileinput[0],apikey_elem,"annotation"],outputs=allres, api_name="annotation")
#button_complete.click(api_extraction,inputs=[fileinput[0],apikey_elem,"annotation"],outputs=allres, api_name="annotation")
#button_complete.click(api_extraction,inputs=[fileinput[0],apikey_elem,"annotation"],outputs=allres, api_name="annotation")
#button_complete.click(api_extraction,inputs=[fileinput[0],apikey_elem,"annotation"],outputs=allres, api_name="annotation")
#button_complete.click(api_extraction,inputs=[fileinput[0],apikey_elem,"annotation"],outputs=allres, api_name="annotation")
#button_complete.click(api_extraction,inputs=[fileinput[0],apikey_elem,"annotation"],outputs=allres, api_name="annotation")
# Run the app
#demo.queue(concurrency_count=5,max_size=20).launch()
demo.launch(share=False,show_api=False)
|