from langchain.callbacks.base import BaseCallbackHandler class StreamHandler(BaseCallbackHandler): def __init__(self, container, initial_text=""): self.container = container self.text = initial_text def on_llm_new_token(self, token: str, **kwargs) -> None: self.text += token self.container.markdown(self.text) # with st.sidebar: # openai_api_key = st.text_input("OpenAI API Key", type="password") # if "messages" not in st.session_state: # st.session_state["messages"] = [ChatMessage(role="assistant", content="How can I help you?")] # for msg in st.session_state.messages: # st.chat_message(msg.role).write(msg.content) # if prompt := st.chat_input(): # st.session_state.messages.append(ChatMessage(role="user", content=prompt)) # st.chat_message("user").write(prompt) # if not openai_api_key: # st.info("Please add your OpenAI API key to continue.") # st.stop() # with st.chat_message("assistant"): # stream_handler = StreamHandler(st.empty()) # # llm = ChatOpenAI(openai_api_key=openai_api_key, streaming=True, callbacks=[stream_handler]) # llm = ChatCohere(openai_api_key=openai_api_key, streaming=True, callbacks=[stream_handler]) # response = llm.invoke(st.session_state.messages) # st.session_state.messages.append(ChatMessage(role="assistant", content=response.content))