JohanDL's picture
initial commit
f1dd031
raw
history blame
31 kB
import copy
import re
import warnings
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from mmdet.models.detectors.dino import DINO
from mmdet.models.detectors.glip import (create_positive_map,
create_positive_map_label_to_token)
from mmdet.models.layers import SinePositionalEncoding
from mmdet.models.layers.transformer.grounding_dino_layers import (
GroundingDinoTransformerDecoder, GroundingDinoTransformerEncoder)
from mmdet.registry import MODELS
from mmdet.structures import OptSampleList, SampleList
from mmdet.utils import ConfigType
from mmengine.runner.amp import autocast
from torch import Tensor
try:
import os
import nltk
download_dir = os.path.expanduser("~/nltk_data")
nltk.download("punkt", download_dir=download_dir, quiet=True)
nltk.download("averaged_perceptron_tagger", download_dir=download_dir, quiet=True)
except ImportError:
raise RuntimeError(
"nltk is not installed, please install it by: " "pip install nltk."
)
def find_noun_phrases(caption: str) -> list:
"""Find noun phrases in a caption using nltk.
Args:
caption (str): The caption to analyze.
Returns:
list: List of noun phrases found in the caption.
Examples:
>>> caption = 'There is two cat and a remote in the picture'
>>> find_noun_phrases(caption) # ['cat', 'a remote', 'the picture']
"""
# try:
# import nltk
# import os
# # nltk.download('punkt', download_dir='~/nltk_data')
# # nltk.download('averaged_perceptron_tagger', download_dir='~/nltk_data')
# download_dir = os.path.expanduser('~/nltk_data')
# nltk.download('punkt', download_dir=download_dir)
# nltk.download('averaged_perceptron_tagger', download_dir=download_dir)
# except ImportError:
# raise RuntimeError('nltk is not installed, please install it by: '
# 'pip install nltk.')
caption = caption.lower()
tokens = nltk.word_tokenize(caption)
pos_tags = nltk.pos_tag(tokens)
grammar = "NP: {<DT>?<JJ.*>*<NN.*>+}"
cp = nltk.RegexpParser(grammar)
result = cp.parse(pos_tags)
noun_phrases = []
for subtree in result.subtrees():
if subtree.label() == "NP":
noun_phrases.append(" ".join(t[0] for t in subtree.leaves()))
return noun_phrases
def remove_punctuation(text: str) -> str:
"""Remove punctuation from a text.
Args:
text (str): The input text.
Returns:
str: The text with punctuation removed.
"""
punctuation = [
"|",
":",
";",
"@",
"(",
")",
"[",
"]",
"{",
"}",
"^",
"'",
'"',
"’",
"`",
"?",
"$",
"%",
"#",
"!",
"&",
"*",
"+",
",",
".",
]
for p in punctuation:
text = text.replace(p, "")
return text.strip()
def run_ner(caption: str) -> Tuple[list, list]:
"""Run NER on a caption and return the tokens and noun phrases.
Args:
caption (str): The input caption.
Returns:
Tuple[List, List]: A tuple containing the tokens and noun phrases.
- tokens_positive (List): A list of token positions.
- noun_phrases (List): A list of noun phrases.
"""
noun_phrases = find_noun_phrases(caption)
noun_phrases = [remove_punctuation(phrase) for phrase in noun_phrases]
noun_phrases = [phrase for phrase in noun_phrases if phrase != ""]
# print('noun_phrases:', noun_phrases)
relevant_phrases = noun_phrases
labels = noun_phrases
tokens_positive = []
for entity, label in zip(relevant_phrases, labels):
try:
# search all occurrences and mark them as different entities
# TODO: Not Robust
for m in re.finditer(entity, caption.lower()):
tokens_positive.append([[m.start(), m.end()]])
except Exception:
print("noun entities:", noun_phrases)
print("entity:", entity)
print("caption:", caption.lower())
return tokens_positive, noun_phrases
def clean_label_name(name: str) -> str:
name = re.sub(r"\(.*\)", "", name)
name = re.sub(r"_", " ", name)
name = re.sub(r" ", " ", name)
return name
def chunks(lst: list, n: int) -> list:
"""Yield successive n-sized chunks from lst."""
all_ = []
for i in range(0, len(lst), n):
data_index = lst[i : i + n]
all_.append(data_index)
counter = 0
for i in all_:
counter += len(i)
assert counter == len(lst)
return all_
@MODELS.register_module(force=True)
class GroundingDINO(DINO):
"""Implementation of `Grounding DINO: Marrying DINO with Grounded Pre-
Training for Open-Set Object Detection.
<https://arxiv.org/abs/2303.05499>`_
Code is modified from the `official github repo
<https://github.com/IDEA-Research/GroundingDINO>`_.
"""
def __init__(self, language_model, *args, use_autocast=False, **kwargs) -> None:
self.language_model_cfg = language_model
self._special_tokens = ". "
self.use_autocast = use_autocast
super().__init__(*args, **kwargs)
def _init_layers(self) -> None:
"""Initialize layers except for backbone, neck and bbox_head."""
self.positional_encoding = SinePositionalEncoding(**self.positional_encoding)
self.encoder = GroundingDinoTransformerEncoder(**self.encoder)
self.decoder = GroundingDinoTransformerDecoder(**self.decoder)
self.embed_dims = self.encoder.embed_dims
self.query_embedding = nn.Embedding(self.num_queries, self.embed_dims)
num_feats = self.positional_encoding.num_feats
assert num_feats * 2 == self.embed_dims, (
f"embed_dims should be exactly 2 times of num_feats. "
f"Found {self.embed_dims} and {num_feats}."
)
self.level_embed = nn.Parameter(
torch.Tensor(self.num_feature_levels, self.embed_dims)
)
self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims)
self.memory_trans_norm = nn.LayerNorm(self.embed_dims)
# text modules
self.language_model = MODELS.build(self.language_model_cfg)
self.text_feat_map = nn.Linear(
self.language_model.language_backbone.body.language_dim,
self.embed_dims,
bias=True,
)
def init_weights(self) -> None:
"""Initialize weights for Transformer and other components."""
super().init_weights()
nn.init.constant_(self.text_feat_map.bias.data, 0)
nn.init.xavier_uniform_(self.text_feat_map.weight.data)
def to_enhance_text_prompts(self, original_caption, enhanced_text_prompts):
caption_string = ""
tokens_positive = []
for idx, word in enumerate(original_caption):
if word in enhanced_text_prompts:
enhanced_text_dict = enhanced_text_prompts[word]
if "prefix" in enhanced_text_dict:
caption_string += enhanced_text_dict["prefix"]
start_i = len(caption_string)
if "name" in enhanced_text_dict:
caption_string += enhanced_text_dict["name"]
else:
caption_string += word
end_i = len(caption_string)
tokens_positive.append([[start_i, end_i]])
if "suffix" in enhanced_text_dict:
caption_string += enhanced_text_dict["suffix"]
else:
tokens_positive.append(
[[len(caption_string), len(caption_string) + len(word)]]
)
caption_string += word
caption_string += self._special_tokens
return caption_string, tokens_positive
def to_plain_text_prompts(self, original_caption):
caption_string = ""
tokens_positive = []
for idx, word in enumerate(original_caption):
tokens_positive.append(
[[len(caption_string), len(caption_string) + len(word)]]
)
caption_string += word
caption_string += self._special_tokens
return caption_string, tokens_positive
def get_tokens_and_prompts(
self,
original_caption: Union[str, list, tuple],
custom_entities: bool = False,
enhanced_text_prompts: Optional[ConfigType] = None,
) -> Tuple[dict, str, list]:
"""Get the tokens positive and prompts for the caption."""
if isinstance(original_caption, (list, tuple)) or custom_entities:
if custom_entities and isinstance(original_caption, str):
original_caption = original_caption.strip(self._special_tokens)
original_caption = original_caption.split(self._special_tokens)
original_caption = list(filter(lambda x: len(x) > 0, original_caption))
original_caption = [clean_label_name(i) for i in original_caption]
if custom_entities and enhanced_text_prompts is not None:
caption_string, tokens_positive = self.to_enhance_text_prompts(
original_caption, enhanced_text_prompts
)
else:
caption_string, tokens_positive = self.to_plain_text_prompts(
original_caption
)
# NOTE: Tokenizer in Grounding DINO is different from
# that in GLIP. The tokenizer in GLIP will pad the
# caption_string to max_length, while the tokenizer
# in Grounding DINO will not.
tokenized = self.language_model.tokenizer(
[caption_string],
padding="max_length" if self.language_model.pad_to_max else "longest",
return_tensors="pt",
)
entities = original_caption
else:
if not original_caption.endswith("."):
original_caption = original_caption + self._special_tokens
# NOTE: Tokenizer in Grounding DINO is different from
# that in GLIP. The tokenizer in GLIP will pad the
# caption_string to max_length, while the tokenizer
# in Grounding DINO will not.
tokenized = self.language_model.tokenizer(
[original_caption],
padding="max_length" if self.language_model.pad_to_max else "longest",
return_tensors="pt",
)
tokens_positive, noun_phrases = run_ner(original_caption)
entities = noun_phrases
caption_string = original_caption
return tokenized, caption_string, tokens_positive, entities
def get_positive_map(self, tokenized, tokens_positive):
positive_map = create_positive_map(
tokenized,
tokens_positive,
max_num_entities=self.bbox_head.cls_branches[
self.decoder.num_layers
].max_text_len,
)
positive_map_label_to_token = create_positive_map_label_to_token(
positive_map, plus=1
)
return positive_map_label_to_token, positive_map
def get_tokens_positive_and_prompts(
self,
original_caption: Union[str, list, tuple],
custom_entities: bool = False,
enhanced_text_prompt: Optional[ConfigType] = None,
tokens_positive: Optional[list] = None,
) -> Tuple[dict, str, Tensor, list]:
"""Get the tokens positive and prompts for the caption.
Args:
original_caption (str): The original caption, e.g. 'bench . car .'
custom_entities (bool, optional): Whether to use custom entities.
If ``True``, the ``original_caption`` should be a list of
strings, each of which is a word. Defaults to False.
Returns:
Tuple[dict, str, dict, str]: The dict is a mapping from each entity
id, which is numbered from 1, to its positive token id.
The str represents the prompts.
"""
if tokens_positive is not None:
if tokens_positive == -1:
if not original_caption.endswith("."):
original_caption = original_caption + self._special_tokens
return None, original_caption, None, original_caption
else:
if not original_caption.endswith("."):
original_caption = original_caption + self._special_tokens
tokenized = self.language_model.tokenizer(
[original_caption],
padding="max_length"
if self.language_model.pad_to_max
else "longest",
return_tensors="pt",
)
positive_map_label_to_token, positive_map = self.get_positive_map(
tokenized, tokens_positive
)
entities = []
for token_positive in tokens_positive:
instance_entities = []
for t in token_positive:
instance_entities.append(original_caption[t[0] : t[1]])
entities.append(" / ".join(instance_entities))
return (
positive_map_label_to_token,
original_caption,
positive_map,
entities,
)
chunked_size = self.test_cfg.get("chunked_size", -1)
if not self.training and chunked_size > 0:
assert (
isinstance(original_caption, (list, tuple)) or custom_entities is True
)
all_output = self.get_tokens_positive_and_prompts_chunked(
original_caption, enhanced_text_prompt
)
(
positive_map_label_to_token,
caption_string,
positive_map,
entities,
) = all_output
else:
(
tokenized,
caption_string,
tokens_positive,
entities,
) = self.get_tokens_and_prompts(
original_caption, custom_entities, enhanced_text_prompt
)
positive_map_label_to_token, positive_map = self.get_positive_map(
tokenized, tokens_positive
)
return positive_map_label_to_token, caption_string, positive_map, entities
def get_tokens_positive_and_prompts_chunked(
self,
original_caption: Union[list, tuple],
enhanced_text_prompts: Optional[ConfigType] = None,
):
chunked_size = self.test_cfg.get("chunked_size", -1)
original_caption = [clean_label_name(i) for i in original_caption]
original_caption_chunked = chunks(original_caption, chunked_size)
ids_chunked = chunks(list(range(1, len(original_caption) + 1)), chunked_size)
positive_map_label_to_token_chunked = []
caption_string_chunked = []
positive_map_chunked = []
entities_chunked = []
for i in range(len(ids_chunked)):
if enhanced_text_prompts is not None:
caption_string, tokens_positive = self.to_enhance_text_prompts(
original_caption_chunked[i], enhanced_text_prompts
)
else:
caption_string, tokens_positive = self.to_plain_text_prompts(
original_caption_chunked[i]
)
tokenized = self.language_model.tokenizer(
[caption_string], return_tensors="pt"
)
if tokenized.input_ids.shape[1] > self.language_model.max_tokens:
warnings.warn(
"Inputting a text that is too long will result "
"in poor prediction performance. "
"Please reduce the --chunked-size."
)
positive_map_label_to_token, positive_map = self.get_positive_map(
tokenized, tokens_positive
)
caption_string_chunked.append(caption_string)
positive_map_label_to_token_chunked.append(positive_map_label_to_token)
positive_map_chunked.append(positive_map)
entities_chunked.append(original_caption_chunked[i])
return (
positive_map_label_to_token_chunked,
caption_string_chunked,
positive_map_chunked,
entities_chunked,
)
def forward_transformer(
self,
img_feats: Tuple[Tensor],
text_dict: Dict,
batch_data_samples: OptSampleList = None,
) -> Dict:
encoder_inputs_dict, decoder_inputs_dict = self.pre_transformer(
img_feats, batch_data_samples
)
encoder_outputs_dict = self.forward_encoder(
**encoder_inputs_dict, text_dict=text_dict
)
tmp_dec_in, head_inputs_dict = self.pre_decoder(
**encoder_outputs_dict, batch_data_samples=batch_data_samples
)
decoder_inputs_dict.update(tmp_dec_in)
decoder_outputs_dict = self.forward_decoder(**decoder_inputs_dict)
head_inputs_dict.update(decoder_outputs_dict)
return head_inputs_dict
def forward_encoder(
self,
feat: Tensor,
feat_mask: Tensor,
feat_pos: Tensor,
spatial_shapes: Tensor,
level_start_index: Tensor,
valid_ratios: Tensor,
text_dict: Dict,
) -> Dict:
text_token_mask = text_dict["text_token_mask"]
memory, memory_text = self.encoder(
query=feat,
query_pos=feat_pos,
key_padding_mask=feat_mask, # for self_attn
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
# for text encoder
memory_text=text_dict["embedded"],
text_attention_mask=~text_token_mask,
position_ids=text_dict["position_ids"],
text_self_attention_masks=text_dict["masks"],
)
encoder_outputs_dict = dict(
memory=memory,
memory_mask=feat_mask,
spatial_shapes=spatial_shapes,
memory_text=memory_text,
text_token_mask=text_token_mask,
)
return encoder_outputs_dict
def pre_decoder(
self,
memory: Tensor,
memory_mask: Tensor,
spatial_shapes: Tensor,
memory_text: Tensor,
text_token_mask: Tensor,
batch_data_samples: OptSampleList = None,
) -> Tuple[Dict]:
bs, _, c = memory.shape
output_memory, output_proposals = self.gen_encoder_output_proposals(
memory, memory_mask, spatial_shapes
)
enc_outputs_class = self.bbox_head.cls_branches[self.decoder.num_layers](
output_memory, memory_text, text_token_mask
)
cls_out_features = self.bbox_head.cls_branches[
self.decoder.num_layers
].max_text_len
enc_outputs_coord_unact = (
self.bbox_head.reg_branches[self.decoder.num_layers](output_memory)
+ output_proposals
)
# NOTE The DINO selects top-k proposals according to scores of
# multi-class classification, while DeformDETR, where the input
# is `enc_outputs_class[..., 0]` selects according to scores of
# binary classification.
topk_indices = torch.topk(
enc_outputs_class.max(-1)[0], k=self.num_queries, dim=1
)[1]
topk_score = torch.gather(
enc_outputs_class,
1,
topk_indices.unsqueeze(-1).repeat(1, 1, cls_out_features),
)
topk_coords_unact = torch.gather(
enc_outputs_coord_unact, 1, topk_indices.unsqueeze(-1).repeat(1, 1, 4)
)
topk_coords = topk_coords_unact.sigmoid()
topk_coords_unact = topk_coords_unact.detach()
query = self.query_embedding.weight[:, None, :]
query = query.repeat(1, bs, 1).transpose(0, 1)
if self.training:
dn_label_query, dn_bbox_query, dn_mask, dn_meta = self.dn_query_generator(
batch_data_samples
)
query = torch.cat([dn_label_query, query], dim=1)
reference_points = torch.cat([dn_bbox_query, topk_coords_unact], dim=1)
else:
reference_points = topk_coords_unact
dn_mask, dn_meta = None, None
reference_points = reference_points.sigmoid()
decoder_inputs_dict = dict(
query=query,
memory=memory,
reference_points=reference_points,
dn_mask=dn_mask,
memory_text=memory_text,
text_attention_mask=~text_token_mask,
)
# NOTE DINO calculates encoder losses on scores and coordinates
# of selected top-k encoder queries, while DeformDETR is of all
# encoder queries.
head_inputs_dict = (
dict(
enc_outputs_class=topk_score,
enc_outputs_coord=topk_coords,
dn_meta=dn_meta,
)
if self.training
else dict()
)
# append text_feats to head_inputs_dict
head_inputs_dict["memory_text"] = memory_text
head_inputs_dict["text_token_mask"] = text_token_mask
return decoder_inputs_dict, head_inputs_dict
def loss(
self, batch_inputs: Tensor, batch_data_samples: SampleList
) -> Union[dict, list]:
text_prompts = [data_samples.text for data_samples in batch_data_samples]
gt_labels = [
data_samples.gt_instances.labels for data_samples in batch_data_samples
]
if "tokens_positive" in batch_data_samples[0]:
tokens_positive = [
data_samples.tokens_positive for data_samples in batch_data_samples
]
positive_maps = []
for token_positive, text_prompt, gt_label in zip(
tokens_positive, text_prompts, gt_labels
):
tokenized = self.language_model.tokenizer(
[text_prompt],
padding="max_length"
if self.language_model.pad_to_max
else "longest",
return_tensors="pt",
)
new_tokens_positive = [
token_positive[label.item()] for label in gt_label
]
_, positive_map = self.get_positive_map(tokenized, new_tokens_positive)
positive_maps.append(positive_map)
new_text_prompts = text_prompts
else:
new_text_prompts = []
positive_maps = []
if len(set(text_prompts)) == 1:
# All the text prompts are the same,
# so there is no need to calculate them multiple times.
(
tokenized,
caption_string,
tokens_positive,
_,
) = self.get_tokens_and_prompts(text_prompts[0], True)
new_text_prompts = [caption_string] * len(batch_inputs)
for gt_label in gt_labels:
new_tokens_positive = [tokens_positive[label] for label in gt_label]
_, positive_map = self.get_positive_map(
tokenized, new_tokens_positive
)
positive_maps.append(positive_map)
else:
for text_prompt, gt_label in zip(text_prompts, gt_labels):
(
tokenized,
caption_string,
tokens_positive,
_,
) = self.get_tokens_and_prompts(text_prompt, True)
new_tokens_positive = [tokens_positive[label] for label in gt_label]
_, positive_map = self.get_positive_map(
tokenized, new_tokens_positive
)
positive_maps.append(positive_map)
new_text_prompts.append(caption_string)
text_dict = self.language_model(new_text_prompts)
if self.text_feat_map is not None:
text_dict["embedded"] = self.text_feat_map(text_dict["embedded"])
for i, data_samples in enumerate(batch_data_samples):
positive_map = positive_maps[i].to(batch_inputs.device).bool().float()
text_token_mask = text_dict["text_token_mask"][i]
data_samples.gt_instances.positive_maps = positive_map
data_samples.gt_instances.text_token_mask = text_token_mask.unsqueeze(
0
).repeat(len(positive_map), 1)
if self.use_autocast:
with autocast(enabled=True):
visual_features = self.extract_feat(batch_inputs)
else:
visual_features = self.extract_feat(batch_inputs)
head_inputs_dict = self.forward_transformer(
visual_features, text_dict, batch_data_samples
)
losses = self.bbox_head.loss(
**head_inputs_dict, batch_data_samples=batch_data_samples
)
return losses
def predict(self, batch_inputs, batch_data_samples, rescale: bool = True):
text_prompts = []
enhanced_text_prompts = []
tokens_positives = []
for data_samples in batch_data_samples:
text_prompts.append(data_samples.text)
if "caption_prompt" in data_samples:
enhanced_text_prompts.append(data_samples.caption_prompt)
else:
enhanced_text_prompts.append(None)
tokens_positives.append(data_samples.get("tokens_positive", None))
if "custom_entities" in batch_data_samples[0]:
# Assuming that the `custom_entities` flag
# inside a batch is always the same. For single image inference
custom_entities = batch_data_samples[0].custom_entities
else:
custom_entities = False
if len(text_prompts) == 1:
# All the text prompts are the same,
# so there is no need to calculate them multiple times.
_positive_maps_and_prompts = [
self.get_tokens_positive_and_prompts(
text_prompts[0],
custom_entities,
enhanced_text_prompts[0],
tokens_positives[0],
)
] * len(batch_inputs)
else:
_positive_maps_and_prompts = [
self.get_tokens_positive_and_prompts(
text_prompt, custom_entities, enhanced_text_prompt, tokens_positive
)
for text_prompt, enhanced_text_prompt, tokens_positive in zip(
text_prompts, enhanced_text_prompts, tokens_positives
)
]
token_positive_maps, text_prompts, _, entities = zip(
*_positive_maps_and_prompts
)
# image feature extraction
visual_feats = self.extract_feat(batch_inputs)
if isinstance(text_prompts[0], list):
# chunked text prompts, only bs=1 is supported
assert len(batch_inputs) == 1
count = 0
results_list = []
entities = [[item for lst in entities[0] for item in lst]]
for b in range(len(text_prompts[0])):
text_prompts_once = [text_prompts[0][b]]
token_positive_maps_once = token_positive_maps[0][b]
text_dict = self.language_model(text_prompts_once)
# text feature map layer
if self.text_feat_map is not None:
text_dict["embedded"] = self.text_feat_map(text_dict["embedded"])
batch_data_samples[0].token_positive_map = token_positive_maps_once
head_inputs_dict = self.forward_transformer(
copy.deepcopy(visual_feats), text_dict, batch_data_samples
)
pred_instances = self.bbox_head.predict(
**head_inputs_dict,
rescale=rescale,
batch_data_samples=batch_data_samples,
)[0]
if len(pred_instances) > 0:
pred_instances.labels += count
count += len(token_positive_maps_once)
results_list.append(pred_instances)
results_list = [results_list[0].cat(results_list)]
is_rec_tasks = [False] * len(results_list)
else:
# extract text feats
text_dict = self.language_model(list(text_prompts))
# text feature map layer
if self.text_feat_map is not None:
text_dict["embedded"] = self.text_feat_map(text_dict["embedded"])
is_rec_tasks = []
for i, data_samples in enumerate(batch_data_samples):
if token_positive_maps[i] is not None:
is_rec_tasks.append(False)
else:
is_rec_tasks.append(True)
data_samples.token_positive_map = token_positive_maps[i]
head_inputs_dict = self.forward_transformer(
visual_feats, text_dict, batch_data_samples
)
results_list = self.bbox_head.predict(
**head_inputs_dict,
rescale=rescale,
batch_data_samples=batch_data_samples,
)
for data_sample, pred_instances, entity, is_rec_task in zip(
batch_data_samples, results_list, entities, is_rec_tasks
):
if len(pred_instances) > 0:
label_names = []
for labels in pred_instances.labels:
if is_rec_task:
label_names.append(entity)
continue
if labels >= len(entity):
warnings.warn(
"The unexpected output indicates an issue with "
"named entity recognition. You can try "
"setting custom_entities=True and running "
"again to see if it helps."
)
label_names.append("unobject")
else:
label_names.append(entity[labels])
# for visualization
pred_instances.label_names = label_names
data_sample.pred_instances = pred_instances
return batch_data_samples