Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule | |
from mmdet.registry import MODELS | |
from mmengine.model import BaseModule | |
class Norm2d(nn.Module): | |
def __init__(self, embed_dim): | |
super().__init__() | |
self.ln = nn.LayerNorm(embed_dim, eps=1e-6) | |
def forward(self, x): | |
x = x.permute(0, 2, 3, 1) | |
x = self.ln(x) | |
x = x.permute(0, 3, 1, 2).contiguous() | |
return x | |
class SimpleFPN(BaseModule): | |
r"""Simplified Feature Pyramid Network. | |
This is an implementation of Simple FPN used in ViT Det. | |
Args: | |
in_channels (List[int]): Number of input channels per scale. | |
out_channels (int): Number of output channels (used at each scale) | |
num_outs (int): Number of output scales. | |
start_level (int): Index of the start input backbone level used to | |
build the feature pyramid. Default: 0. | |
end_level (int): Index of the end input backbone level (exclusive) to | |
build the feature pyramid. Default: -1, which means the last level. | |
add_extra_convs (bool | str): If bool, it decides whether to add conv | |
layers on top of the original feature maps. Default to False. | |
If True, it is equivalent to `add_extra_convs='on_input'`. | |
If str, it specifies the source feature map of the extra convs. | |
Only the following options are allowed | |
- 'on_input': Last feat map of neck inputs (i.e. backbone feature). | |
- 'on_lateral': Last feature map after lateral convs. | |
- 'on_output': The last output feature map after fpn convs. | |
relu_before_extra_convs (bool): Whether to apply relu before the extra | |
conv. Default: False. | |
no_norm_on_lateral (bool): Whether to apply norm on lateral. | |
Default: False. | |
conv_cfg (dict): Config dict for convolution layer. Default: None. | |
norm_cfg (dict): Config dict for normalization layer. Default: None. | |
act_cfg (str): Config dict for activation layer in ConvModule. | |
Default: None. | |
upsample_cfg (dict): Config dict for interpolate layer. | |
Default: `dict(mode='nearest')` | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Example: | |
>>> import torch | |
>>> in_channels = [2, 3, 5, 7] | |
>>> scales = [340, 170, 84, 43] | |
>>> inputs = [torch.rand(1, c, s, s) | |
... for c, s in zip(in_channels, scales)] | |
>>> self = FPN(in_channels, 11, len(in_channels)).eval() | |
>>> outputs = self.forward(inputs) | |
>>> for i in range(len(outputs)): | |
... print(f'outputs[{i}].shape = {outputs[i].shape}') | |
outputs[0].shape = torch.Size([1, 11, 340, 340]) | |
outputs[1].shape = torch.Size([1, 11, 170, 170]) | |
outputs[2].shape = torch.Size([1, 11, 84, 84]) | |
outputs[3].shape = torch.Size([1, 11, 43, 43]) | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
num_outs, | |
start_level=0, | |
end_level=-1, | |
add_extra_convs=False, | |
relu_before_extra_convs=False, | |
no_norm_on_lateral=False, | |
conv_cfg=None, | |
norm_cfg=None, | |
act_cfg=None, | |
use_residual=True, | |
upsample_cfg=dict(mode="nearest"), | |
init_cfg=dict(type="Xavier", layer="Conv2d", distribution="uniform"), | |
): | |
super(SimpleFPN, self).__init__(init_cfg) | |
assert isinstance(in_channels, list) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.num_ins = len(in_channels) | |
self.num_outs = num_outs | |
self.relu_before_extra_convs = relu_before_extra_convs | |
self.no_norm_on_lateral = no_norm_on_lateral | |
self.fp16_enabled = False | |
self.upsample_cfg = upsample_cfg.copy() | |
self.use_residual = use_residual | |
if end_level == -1: | |
self.backbone_end_level = self.num_ins | |
assert num_outs >= self.num_ins - start_level | |
else: | |
# if end_level < inputs, no extra level is allowed | |
self.backbone_end_level = end_level | |
assert end_level <= len(in_channels) | |
assert num_outs == end_level - start_level | |
self.start_level = start_level | |
self.end_level = end_level | |
self.add_extra_convs = add_extra_convs | |
assert isinstance(add_extra_convs, (str, bool)) | |
if isinstance(add_extra_convs, str): | |
# Extra_convs_source choices: 'on_input', 'on_lateral', 'on_output' | |
assert add_extra_convs in ("on_input", "on_lateral", "on_output") | |
elif add_extra_convs: # True | |
self.add_extra_convs = "on_input" | |
self.lateral_convs = nn.ModuleList() | |
self.fpn_convs = nn.ModuleList() | |
for i in range(self.start_level, self.backbone_end_level): | |
l_conv = ConvModule( | |
in_channels[i], | |
out_channels, | |
1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg if not self.no_norm_on_lateral else None, | |
act_cfg=act_cfg, | |
inplace=False, | |
) | |
fpn_conv = ConvModule( | |
out_channels, | |
out_channels, | |
3, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
inplace=False, | |
) | |
# l_conv = checkpoint_wrapper(l_conv) | |
# fpn_conv = checkpoint_wrapper(fpn_conv) | |
self.lateral_convs.append(l_conv) | |
self.fpn_convs.append(fpn_conv) | |
# add extra conv layers (e.g., RetinaNet) | |
extra_levels = num_outs - self.backbone_end_level + self.start_level | |
if self.add_extra_convs and extra_levels >= 1: | |
for i in range(extra_levels): | |
if i == 0 and self.add_extra_convs == "on_input": | |
in_channels = self.in_channels[self.backbone_end_level - 1] | |
else: | |
in_channels = out_channels | |
extra_fpn_conv = ConvModule( | |
in_channels, | |
out_channels, | |
3, | |
stride=2, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
inplace=False, | |
) | |
self.fpn_convs.append(extra_fpn_conv) | |
self.fpn1 = nn.Sequential( | |
nn.ConvTranspose2d( | |
self.in_channels[0], self.in_channels[0], kernel_size=2, stride=2 | |
), | |
Norm2d(self.in_channels[0]), | |
nn.GELU(), | |
nn.ConvTranspose2d( | |
self.in_channels[0], self.in_channels[0], kernel_size=2, stride=2 | |
), | |
) | |
self.fpn2 = nn.Sequential( | |
nn.ConvTranspose2d( | |
self.in_channels[0], self.in_channels[0], kernel_size=2, stride=2 | |
), | |
) | |
self.fpn3 = nn.Identity() | |
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) | |
def forward(self, inputs): | |
"""Forward function.""" | |
features = [] | |
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] | |
if isinstance(inputs, list): | |
assert len(inputs) == len(ops) | |
for i in range(len(ops)): | |
features.append(ops[i](inputs[i])) | |
else: | |
for i in range(len(ops)): | |
features.append(ops[i](inputs)) | |
assert len(features) == len(self.in_channels) | |
# build laterals | |
laterals = [ | |
lateral_conv(features[i + self.start_level]) | |
for i, lateral_conv in enumerate(self.lateral_convs) | |
] | |
# build top-down path | |
used_backbone_levels = len(laterals) | |
if self.use_residual: | |
for i in range(used_backbone_levels - 1, 0, -1): | |
# In some cases, fixing `scale factor` (e.g. 2) is preferred, but | |
# it cannot co-exist with `size` in `F.interpolate`. | |
if "scale_factor" in self.upsample_cfg: | |
# fix runtime error of "+=" inplace operation in PyTorch 1.10 | |
laterals[i - 1] = laterals[i - 1] + F.interpolate( | |
laterals[i], **self.upsample_cfg | |
) | |
else: | |
prev_shape = laterals[i - 1].shape[2:] | |
laterals[i - 1] = laterals[i - 1] + F.interpolate( | |
laterals[i], size=prev_shape, **self.upsample_cfg | |
) | |
# build outputs | |
# part 1: from original levels | |
outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels)] | |
# part 2: add extra levels | |
if self.num_outs > len(outs): | |
# use max pool to get more levels on top of outputs | |
# (e.g., Faster R-CNN, Mask R-CNN) | |
if not self.add_extra_convs: | |
for i in range(self.num_outs - used_backbone_levels): | |
outs.append(F.max_pool2d(outs[-1], 1, stride=2)) | |
# add conv layers on top of original feature maps (RetinaNet) | |
else: | |
if self.add_extra_convs == "on_input": | |
extra_source = features[self.backbone_end_level - 1] | |
elif self.add_extra_convs == "on_lateral": | |
extra_source = laterals[-1] | |
elif self.add_extra_convs == "on_output": | |
extra_source = outs[-1] | |
else: | |
raise NotImplementedError | |
outs.append(self.fpn_convs[used_backbone_levels](extra_source)) | |
for i in range(used_backbone_levels + 1, self.num_outs): | |
if self.relu_before_extra_convs: | |
outs.append(self.fpn_convs[i](F.relu(outs[-1]))) | |
else: | |
outs.append(self.fpn_convs[i](outs[-1])) | |
return tuple(outs) | |