JohanDL's picture
initial commit
f1dd031
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import sys
import os.path as osp
import warnings
from copy import deepcopy
from mmengine import ConfigDict
from mmengine.config import Config, DictAction
from mmengine.runner import Runner
from mmdet.engine.hooks.utils import trigger_visualization_hook
from mmdet.evaluation import DumpDetResults
from mmdet.registry import RUNNERS
from mmdet.utils import setup_cache_size_limit_of_dynamo
# Correct the path to point directly to the root of your project where 'masa' is located
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.insert(0, project_root)
import masa
import projects.Detic_new.detic
# TODO: support fuse_conv_bn and format_only
def parse_args():
parser = argparse.ArgumentParser(
description='MASA test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
parser.add_argument(
'--out',
type=str,
help='dump predictions to a pickle file for offline evaluation')
parser.add_argument(
'--show', action='store_true', help='show prediction results')
parser.add_argument(
'--show-dir',
help='directory where painted images will be saved. '
'If specified, it will be automatically saved '
'to the work_dir/timestamp/show_dir')
parser.add_argument(
'--wait-time', type=float, default=2, help='the interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--tta', action='store_true')
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
# will pass the `--local-rank` parameter to `tools/train.py` instead
# of `--local_rank`.
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
# Reduce the number of repeated compilations and improve
# testing speed.
setup_cache_size_limit_of_dynamo()
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
if args.show or args.show_dir:
cfg = trigger_visualization_hook(cfg, args)
if args.tta:
if 'tta_model' not in cfg:
warnings.warn('Cannot find ``tta_model`` in config, '
'we will set it as default.')
cfg.tta_model = dict(
type='DetTTAModel',
tta_cfg=dict(
nms=dict(type='nms', iou_threshold=0.5), max_per_img=100))
if 'tta_pipeline' not in cfg:
warnings.warn('Cannot find ``tta_pipeline`` in config, '
'we will set it as default.')
test_data_cfg = cfg.test_dataloader.dataset
while 'dataset' in test_data_cfg:
test_data_cfg = test_data_cfg['dataset']
cfg.tta_pipeline = deepcopy(test_data_cfg.pipeline)
flip_tta = dict(
type='TestTimeAug',
transforms=[
[
dict(type='RandomFlip', prob=1.),
dict(type='RandomFlip', prob=0.)
],
[
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape',
'img_shape', 'scale_factor', 'flip',
'flip_direction'))
],
])
cfg.tta_pipeline[-1] = flip_tta
cfg.model = ConfigDict(**cfg.tta_model, module=cfg.model)
cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline
# build the runner from config
if 'runner_type' not in cfg:
# build the default runner
runner = Runner.from_cfg(cfg)
else:
# build customized runner from the registry
# if 'runner_type' is set in the cfg
runner = RUNNERS.build(cfg)
# add `DumpResults` dummy metric
if args.out is not None:
assert args.out.endswith(('.pkl', '.pickle')), \
'The dump file must be a pkl file.'
runner.test_evaluator.metrics.append(
DumpDetResults(out_file_path=args.out))
# start testing
runner.test()
if __name__ == '__main__':
main()