Spaces:
Runtime error
Runtime error
adding demo folder
Browse files- demo/__pycache__/utils.cpython-311.pyc +0 -0
- demo/utils.py +183 -0
- demo/video_demo_with_text.py +254 -0
demo/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (11.1 kB). View file
|
|
demo/utils.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
from mmdet.models.task_modules.assigners import BboxOverlaps2D
|
6 |
+
from mmengine.structures import InstanceData
|
7 |
+
def average_score_filter(instances_list):
|
8 |
+
# Extract instance IDs and their scores
|
9 |
+
instance_id_to_frames = defaultdict(list)
|
10 |
+
instance_id_to_scores = defaultdict(list)
|
11 |
+
for frame_idx, instances in enumerate(instances_list):
|
12 |
+
for i, instance_id in enumerate(instances[0].pred_track_instances.instances_id):
|
13 |
+
instance_id_to_frames[instance_id.item()].append(frame_idx)
|
14 |
+
instance_id_to_scores[instance_id.item()].append(instances[0].pred_track_instances.scores[i].cpu().numpy())
|
15 |
+
|
16 |
+
# Compute average scores for each segment of each instance ID
|
17 |
+
for instance_id, frames in instance_id_to_frames.items():
|
18 |
+
scores = np.array(instance_id_to_scores[instance_id])
|
19 |
+
|
20 |
+
# Identify segments
|
21 |
+
segments = []
|
22 |
+
segment = [frames[0]]
|
23 |
+
for idx in range(1, len(frames)):
|
24 |
+
if frames[idx] == frames[idx - 1] + 1:
|
25 |
+
segment.append(frames[idx])
|
26 |
+
else:
|
27 |
+
segments.append(segment)
|
28 |
+
segment = [frames[idx]]
|
29 |
+
segments.append(segment)
|
30 |
+
|
31 |
+
# Compute average score for each segment
|
32 |
+
avg_scores = np.copy(scores)
|
33 |
+
for segment in segments:
|
34 |
+
segment_scores = scores[frames.index(segment[0]):frames.index(segment[-1]) + 1]
|
35 |
+
avg_score = np.mean(segment_scores)
|
36 |
+
avg_scores[frames.index(segment[0]):frames.index(segment[-1]) + 1] = avg_score
|
37 |
+
|
38 |
+
# Update instances_list with average scores
|
39 |
+
for frame_idx, avg_score in zip(frames, avg_scores):
|
40 |
+
instances_list[frame_idx][0].pred_track_instances.scores[
|
41 |
+
instances_list[frame_idx][0].pred_track_instances.instances_id == instance_id] = torch.tensor(avg_score, dtype=instances_list[frame_idx][0].pred_track_instances.scores.dtype)
|
42 |
+
|
43 |
+
return instances_list
|
44 |
+
|
45 |
+
|
46 |
+
def moving_average_filter(instances_list, window_size=5):
|
47 |
+
# Helper function to compute the moving average
|
48 |
+
def smooth_bbox(bboxes, window_size):
|
49 |
+
smoothed_bboxes = np.copy(bboxes)
|
50 |
+
half_window = window_size // 2
|
51 |
+
for i in range(4):
|
52 |
+
padded_bboxes = np.pad(bboxes[:, i], (half_window, half_window), mode='edge')
|
53 |
+
smoothed_bboxes[:, i] = np.convolve(padded_bboxes, np.ones(window_size) / window_size, mode='valid')
|
54 |
+
return smoothed_bboxes
|
55 |
+
|
56 |
+
# Extract bounding boxes and instance IDs
|
57 |
+
instance_id_to_frames = defaultdict(list)
|
58 |
+
instance_id_to_bboxes = defaultdict(list)
|
59 |
+
for frame_idx, instances in enumerate(instances_list):
|
60 |
+
for i, instance_id in enumerate(instances[0].pred_track_instances.instances_id):
|
61 |
+
instance_id_to_frames[instance_id.item()].append(frame_idx)
|
62 |
+
instance_id_to_bboxes[instance_id.item()].append(instances[0].pred_track_instances.bboxes[i].cpu().numpy())
|
63 |
+
|
64 |
+
# Apply moving average filter to each segment
|
65 |
+
for instance_id, frames in instance_id_to_frames.items():
|
66 |
+
bboxes = np.array(instance_id_to_bboxes[instance_id])
|
67 |
+
|
68 |
+
# Identify segments
|
69 |
+
segments = []
|
70 |
+
segment = [frames[0]]
|
71 |
+
for idx in range(1, len(frames)):
|
72 |
+
if frames[idx] == frames[idx - 1] + 1:
|
73 |
+
segment.append(frames[idx])
|
74 |
+
else:
|
75 |
+
segments.append(segment)
|
76 |
+
segment = [frames[idx]]
|
77 |
+
segments.append(segment)
|
78 |
+
|
79 |
+
# Smooth bounding boxes for each segment
|
80 |
+
smoothed_bboxes = np.copy(bboxes)
|
81 |
+
for segment in segments:
|
82 |
+
if len(segment) >= window_size:
|
83 |
+
segment_bboxes = bboxes[frames.index(segment[0]):frames.index(segment[-1]) + 1]
|
84 |
+
smoothed_segment_bboxes = smooth_bbox(segment_bboxes, window_size)
|
85 |
+
smoothed_bboxes[frames.index(segment[0]):frames.index(segment[-1]) + 1] = smoothed_segment_bboxes
|
86 |
+
|
87 |
+
# Update instances_list with smoothed bounding boxes
|
88 |
+
for frame_idx, smoothed_bbox in zip(frames, smoothed_bboxes):
|
89 |
+
instances_list[frame_idx][0].pred_track_instances.bboxes[
|
90 |
+
instances_list[frame_idx][0].pred_track_instances.instances_id == instance_id] = torch.tensor(smoothed_bbox, dtype=instances_list[frame_idx][0].pred_track_instances.bboxes.dtype).to(instances_list[frame_idx][0].pred_track_instances.bboxes.device)
|
91 |
+
|
92 |
+
return instances_list
|
93 |
+
|
94 |
+
|
95 |
+
def identify_and_remove_giant_bounding_boxes(instances_list, image_size, size_threshold, confidence_threshold,
|
96 |
+
coverage_threshold, object_num_thr=4, max_objects_in_box=6):
|
97 |
+
# Initialize BboxOverlaps2D with 'iof' mode
|
98 |
+
bbox_overlaps_calculator = BboxOverlaps2D()
|
99 |
+
|
100 |
+
# Initialize data structures
|
101 |
+
invalid_instance_ids = set()
|
102 |
+
|
103 |
+
image_width, image_height = image_size
|
104 |
+
two_thirds_image_area = (2 / 3) * (image_width * image_height)
|
105 |
+
|
106 |
+
# Step 1: Identify giant bounding boxes and record their instance_ids
|
107 |
+
for frame_idx, instances in enumerate(instances_list):
|
108 |
+
bounding_boxes = instances[0].pred_track_instances.bboxes
|
109 |
+
confidence_scores = instances[0].pred_track_instances.scores
|
110 |
+
instance_ids = instances[0].pred_track_instances.instances_id
|
111 |
+
|
112 |
+
N = bounding_boxes.size(0)
|
113 |
+
|
114 |
+
for i in range(N):
|
115 |
+
current_box = bounding_boxes[i]
|
116 |
+
box_size = (current_box[2] - current_box[0]) * (current_box[3] - current_box[1])
|
117 |
+
|
118 |
+
if box_size < size_threshold:
|
119 |
+
continue
|
120 |
+
|
121 |
+
other_boxes = torch.cat([bounding_boxes[:i], bounding_boxes[i + 1:]])
|
122 |
+
other_confidences = torch.cat([confidence_scores[:i], confidence_scores[i + 1:]])
|
123 |
+
iofs = bbox_overlaps_calculator(other_boxes, current_box.unsqueeze(0), mode='iof', is_aligned=False)
|
124 |
+
|
125 |
+
if iofs.numel() == 0:
|
126 |
+
continue
|
127 |
+
|
128 |
+
high_conf_mask = other_confidences > confidence_threshold
|
129 |
+
|
130 |
+
if high_conf_mask.numel() == 0 or torch.sum(high_conf_mask) == 0:
|
131 |
+
continue
|
132 |
+
|
133 |
+
high_conf_masked_iofs = iofs[high_conf_mask]
|
134 |
+
|
135 |
+
covered_high_conf_boxes_count = torch.sum(high_conf_masked_iofs > coverage_threshold)
|
136 |
+
|
137 |
+
if covered_high_conf_boxes_count >= object_num_thr and torch.all(
|
138 |
+
confidence_scores[i] < other_confidences[high_conf_mask]):
|
139 |
+
invalid_instance_ids.add(instance_ids[i].item())
|
140 |
+
continue
|
141 |
+
|
142 |
+
if box_size > two_thirds_image_area:
|
143 |
+
invalid_instance_ids.add(instance_ids[i].item())
|
144 |
+
continue
|
145 |
+
|
146 |
+
# New condition: if the bounding box contains more than 6 objects
|
147 |
+
if covered_high_conf_boxes_count > max_objects_in_box:
|
148 |
+
invalid_instance_ids.add(instance_ids[i].item())
|
149 |
+
continue
|
150 |
+
|
151 |
+
# Remove invalid tracks
|
152 |
+
for frame_idx, instances in enumerate(instances_list):
|
153 |
+
valid_mask = torch.tensor(
|
154 |
+
[instance_id.item() not in invalid_instance_ids for instance_id in
|
155 |
+
instances[0].pred_track_instances.instances_id])
|
156 |
+
if len(valid_mask) == 0:
|
157 |
+
continue
|
158 |
+
new_instance_data = InstanceData()
|
159 |
+
new_instance_data.bboxes = instances[0].pred_track_instances.bboxes[valid_mask]
|
160 |
+
new_instance_data.scores = instances[0].pred_track_instances.scores[valid_mask]
|
161 |
+
new_instance_data.instances_id = instances[0].pred_track_instances.instances_id[valid_mask]
|
162 |
+
new_instance_data.labels = instances[0].pred_track_instances.labels[valid_mask]
|
163 |
+
if 'masks' in instances[0].pred_track_instances:
|
164 |
+
new_instance_data.masks = instances[0].pred_track_instances.masks[valid_mask]
|
165 |
+
instances[0].pred_track_instances = new_instance_data
|
166 |
+
|
167 |
+
return instances_list
|
168 |
+
|
169 |
+
|
170 |
+
def filter_and_update_tracks(instances_list, image_size, size_threshold=10000, coverage_threshold=0.75,
|
171 |
+
confidence_threshold=0.2, smoothing_window_size=5):
|
172 |
+
|
173 |
+
# Step 1: Identify and remove giant bounding boxes
|
174 |
+
instances_list = identify_and_remove_giant_bounding_boxes(instances_list, image_size, size_threshold, confidence_threshold, coverage_threshold)
|
175 |
+
|
176 |
+
# Step 2: Smooth interpolated bounding boxes
|
177 |
+
instances_list = moving_average_filter(instances_list, window_size=smoothing_window_size)
|
178 |
+
|
179 |
+
# Step 3: compute the track average score
|
180 |
+
instances_list = average_score_filter(instances_list)
|
181 |
+
|
182 |
+
|
183 |
+
return instances_list
|
demo/video_demo_with_text.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
4 |
+
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
5 |
+
sys.path.insert(0, project_root)
|
6 |
+
|
7 |
+
import gc
|
8 |
+
import resource
|
9 |
+
import argparse
|
10 |
+
import cv2
|
11 |
+
import tqdm
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch.multiprocessing import Pool, set_start_method
|
15 |
+
|
16 |
+
import mmcv
|
17 |
+
from mmcv.transforms import Compose
|
18 |
+
from mmengine.utils import track_iter_progress
|
19 |
+
from mmdet.apis import init_detector
|
20 |
+
from mmdet.registry import VISUALIZERS
|
21 |
+
from mmcv.ops.nms import batched_nms
|
22 |
+
|
23 |
+
import masa
|
24 |
+
from masa.apis import inference_masa, init_masa, inference_detector, build_test_pipeline
|
25 |
+
from masa.models.sam import SamPredictor, sam_model_registry
|
26 |
+
from utils import filter_and_update_tracks
|
27 |
+
|
28 |
+
import warnings
|
29 |
+
warnings.filterwarnings('ignore')
|
30 |
+
|
31 |
+
# Ensure the right start method for multiprocessing
|
32 |
+
try:
|
33 |
+
set_start_method('spawn')
|
34 |
+
except RuntimeError:
|
35 |
+
pass
|
36 |
+
|
37 |
+
def set_file_descriptor_limit(limit):
|
38 |
+
soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
39 |
+
resource.setrlimit(resource.RLIMIT_NOFILE, (limit, hard))
|
40 |
+
|
41 |
+
# Set the file descriptor limit to 65536
|
42 |
+
set_file_descriptor_limit(65536)
|
43 |
+
|
44 |
+
def visualize_frame(args, visualizer, frame, track_result, frame_idx, fps=None):
|
45 |
+
visualizer.add_datasample(
|
46 |
+
name='video_' + str(frame_idx),
|
47 |
+
image=frame[:, :, ::-1],
|
48 |
+
data_sample=track_result[0],
|
49 |
+
draw_gt=False,
|
50 |
+
show=False,
|
51 |
+
out_file=None,
|
52 |
+
pred_score_thr=args.score_thr,
|
53 |
+
fps=fps,)
|
54 |
+
frame = visualizer.get_image()
|
55 |
+
gc.collect()
|
56 |
+
return frame
|
57 |
+
|
58 |
+
def parse_args():
|
59 |
+
|
60 |
+
parser = argparse.ArgumentParser(description='MASA video demo')
|
61 |
+
parser.add_argument('video', help='Video file')
|
62 |
+
parser.add_argument('--det_config', help='Detector Config file')
|
63 |
+
parser.add_argument('--masa_config', help='Masa Config file')
|
64 |
+
parser.add_argument('--det_checkpoint', help='Detector Checkpoint file')
|
65 |
+
parser.add_argument('--masa_checkpoint', help='Masa Checkpoint file')
|
66 |
+
parser.add_argument( '--device', default='cuda:0', help='Device used for inference')
|
67 |
+
parser.add_argument('--score-thr', type=float, default=0.2, help='Bbox score threshold')
|
68 |
+
parser.add_argument('--out', type=str, help='Output video file')
|
69 |
+
parser.add_argument('--save_dir', type=str, help='Output for video frames')
|
70 |
+
parser.add_argument('--texts', help='text prompt')
|
71 |
+
parser.add_argument('--line_width', type=int, default=5, help='Line width')
|
72 |
+
parser.add_argument('--unified', action='store_true', help='Use unified model, which means the masa adapter is built upon the detector model.')
|
73 |
+
parser.add_argument('--detector_type', type=str, default='mmdet', help='Choose detector type')
|
74 |
+
parser.add_argument('--fp16', action='store_true', help='Activation fp16 mode')
|
75 |
+
parser.add_argument('--no-post', action='store_true', help='Do not post-process the results ')
|
76 |
+
parser.add_argument('--show_fps', action='store_true', help='Visualize the fps')
|
77 |
+
parser.add_argument('--sam_mask', action='store_true', help='Use SAM to generate mask for segmentation tracking')
|
78 |
+
parser.add_argument('--sam_path', type=str, default='saved_models/pretrain_weights/sam_vit_h_4b8939.pth', help='Default path for SAM models')
|
79 |
+
parser.add_argument('--sam_type', type=str, default='vit_h', help='Default type for SAM models')
|
80 |
+
parser.add_argument(
|
81 |
+
'--wait-time',
|
82 |
+
type=float,
|
83 |
+
default=1,
|
84 |
+
help='The interval of show (s), 0 is block')
|
85 |
+
args = parser.parse_args()
|
86 |
+
return args
|
87 |
+
|
88 |
+
def main():
|
89 |
+
args = parse_args()
|
90 |
+
assert args.out, \
|
91 |
+
('Please specify at least one operation (save the '
|
92 |
+
'video) with the argument "--out" ')
|
93 |
+
|
94 |
+
# build the model from a config file and a checkpoint file
|
95 |
+
if args.unified:
|
96 |
+
masa_model = init_masa(args.masa_config, args.masa_checkpoint, device=args.device)
|
97 |
+
else:
|
98 |
+
det_model = init_detector(args.det_config, args.det_checkpoint, palette='random', device=args.device)
|
99 |
+
masa_model = init_masa(args.masa_config, args.masa_checkpoint, device=args.device)
|
100 |
+
# build test pipeline
|
101 |
+
det_model.cfg.test_dataloader.dataset.pipeline[
|
102 |
+
0].type = 'mmdet.LoadImageFromNDArray'
|
103 |
+
test_pipeline = Compose(det_model.cfg.test_dataloader.dataset.pipeline)
|
104 |
+
|
105 |
+
if args.sam_mask:
|
106 |
+
print('Loading SAM model...')
|
107 |
+
device = args.device
|
108 |
+
sam_model = sam_model_registry[args.sam_type](args.sam_path)
|
109 |
+
sam_predictor = SamPredictor(sam_model.to(device))
|
110 |
+
|
111 |
+
video_reader = mmcv.VideoReader(args.video)
|
112 |
+
video_writer = None
|
113 |
+
|
114 |
+
#### parsing the text input
|
115 |
+
texts = args.texts
|
116 |
+
if texts is not None:
|
117 |
+
masa_test_pipeline = build_test_pipeline(masa_model.cfg, with_text=True)
|
118 |
+
else:
|
119 |
+
masa_test_pipeline = build_test_pipeline(masa_model.cfg)
|
120 |
+
|
121 |
+
if texts is not None:
|
122 |
+
masa_model.cfg.visualizer['texts'] = texts
|
123 |
+
else:
|
124 |
+
masa_model.cfg.visualizer['texts'] = det_model.dataset_meta['classes']
|
125 |
+
|
126 |
+
# init visualizer
|
127 |
+
masa_model.cfg.visualizer['save_dir'] = args.save_dir
|
128 |
+
masa_model.cfg.visualizer['line_width'] = args.line_width
|
129 |
+
if args.sam_mask:
|
130 |
+
masa_model.cfg.visualizer['alpha'] = 0.5
|
131 |
+
visualizer = VISUALIZERS.build(masa_model.cfg.visualizer)
|
132 |
+
|
133 |
+
if args.out:
|
134 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
135 |
+
video_writer = cv2.VideoWriter(
|
136 |
+
args.out, fourcc, video_reader.fps,
|
137 |
+
(video_reader.width, video_reader.height))
|
138 |
+
|
139 |
+
frame_idx = 0
|
140 |
+
instances_list = []
|
141 |
+
frames = []
|
142 |
+
fps_list = []
|
143 |
+
for frame in track_iter_progress((video_reader, len(video_reader))):
|
144 |
+
|
145 |
+
# unified models mean that masa build upon and reuse the foundation model's backbone features for tracking
|
146 |
+
if args.unified:
|
147 |
+
track_result = inference_masa(masa_model, frame,
|
148 |
+
frame_id=frame_idx,
|
149 |
+
video_len=len(video_reader),
|
150 |
+
test_pipeline=masa_test_pipeline,
|
151 |
+
text_prompt=texts,
|
152 |
+
fp16=args.fp16,
|
153 |
+
detector_type=args.detector_type,
|
154 |
+
show_fps=args.show_fps)
|
155 |
+
if args.show_fps:
|
156 |
+
track_result, fps = track_result
|
157 |
+
else:
|
158 |
+
|
159 |
+
if args.detector_type == 'mmdet':
|
160 |
+
result = inference_detector(det_model, frame,
|
161 |
+
text_prompt=texts,
|
162 |
+
test_pipeline=test_pipeline,
|
163 |
+
fp16=args.fp16)
|
164 |
+
|
165 |
+
# Perfom inter-class NMS to remove nosiy detections
|
166 |
+
det_bboxes, keep_idx = batched_nms(boxes=result.pred_instances.bboxes,
|
167 |
+
scores=result.pred_instances.scores,
|
168 |
+
idxs=result.pred_instances.labels,
|
169 |
+
class_agnostic=True,
|
170 |
+
nms_cfg=dict(type='nms',
|
171 |
+
iou_threshold=0.5,
|
172 |
+
class_agnostic=True,
|
173 |
+
split_thr=100000))
|
174 |
+
|
175 |
+
det_bboxes = torch.cat([det_bboxes,
|
176 |
+
result.pred_instances.scores[keep_idx].unsqueeze(1)],
|
177 |
+
dim=1)
|
178 |
+
det_labels = result.pred_instances.labels[keep_idx]
|
179 |
+
|
180 |
+
track_result = inference_masa(masa_model, frame, frame_id=frame_idx,
|
181 |
+
video_len=len(video_reader),
|
182 |
+
test_pipeline=masa_test_pipeline,
|
183 |
+
det_bboxes=det_bboxes,
|
184 |
+
det_labels=det_labels,
|
185 |
+
fp16=args.fp16,
|
186 |
+
show_fps=args.show_fps)
|
187 |
+
if args.show_fps:
|
188 |
+
track_result, fps = track_result
|
189 |
+
|
190 |
+
frame_idx += 1
|
191 |
+
if 'masks' in track_result[0].pred_track_instances:
|
192 |
+
if len(track_result[0].pred_track_instances.masks) >0:
|
193 |
+
track_result[0].pred_track_instances.masks = torch.stack(track_result[0].pred_track_instances.masks, dim=0)
|
194 |
+
track_result[0].pred_track_instances.masks = track_result[0].pred_track_instances.masks.cpu().numpy()
|
195 |
+
|
196 |
+
track_result[0].pred_track_instances.bboxes = track_result[0].pred_track_instances.bboxes.to(torch.float32)
|
197 |
+
instances_list.append(track_result.to('cpu'))
|
198 |
+
frames.append(frame)
|
199 |
+
if args.show_fps:
|
200 |
+
fps_list.append(fps)
|
201 |
+
|
202 |
+
if not args.no_post:
|
203 |
+
instances_list = filter_and_update_tracks(instances_list, (frame.shape[1], frame.shape[0]))
|
204 |
+
|
205 |
+
if args.sam_mask:
|
206 |
+
print('Start to generate mask using SAM!')
|
207 |
+
for idx, (frame, track_result) in tqdm.tqdm(enumerate(zip(frames, instances_list))):
|
208 |
+
track_result = track_result.to(device)
|
209 |
+
track_result[0].pred_track_instances.instances_id = track_result[0].pred_track_instances.instances_id.to(device)
|
210 |
+
track_result[0].pred_track_instances = track_result[0].pred_track_instances[(track_result[0].pred_track_instances.scores.float() > args.score_thr).to(device)]
|
211 |
+
input_boxes = track_result[0].pred_track_instances.bboxes
|
212 |
+
if len(input_boxes) == 0:
|
213 |
+
continue
|
214 |
+
sam_predictor.set_image(frame)
|
215 |
+
transformed_boxes = sam_predictor.transform.apply_boxes_torch(input_boxes, frame.shape[:2])
|
216 |
+
masks, _, _ = sam_predictor.predict_torch(
|
217 |
+
point_coords=None,
|
218 |
+
point_labels=None,
|
219 |
+
boxes=transformed_boxes,
|
220 |
+
multimask_output=False,
|
221 |
+
)
|
222 |
+
track_result[0].pred_track_instances.masks = masks.squeeze(1).cpu().numpy()
|
223 |
+
instances_list[idx] = track_result
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
if args.out:
|
228 |
+
print('Start to visualize the results...')
|
229 |
+
num_cores = max(1, min(os.cpu_count() - 1, 16))
|
230 |
+
print('Using {} cores for visualization'.format(num_cores))
|
231 |
+
|
232 |
+
if args.show_fps:
|
233 |
+
with Pool(processes=num_cores) as pool:
|
234 |
+
|
235 |
+
frames = pool.starmap(
|
236 |
+
visualize_frame, [(args, visualizer, frame, track_result.to('cpu'), idx, fps) for idx, (frame, fps, track_result) in enumerate(zip(frames, fps_list, instances_list))]
|
237 |
+
)
|
238 |
+
else:
|
239 |
+
with Pool(processes=num_cores) as pool:
|
240 |
+
frames = pool.starmap(
|
241 |
+
visualize_frame, [(args, visualizer, frame, track_result.to('cpu'), idx) for idx, (frame, track_result) in
|
242 |
+
enumerate(zip(frames, instances_list))]
|
243 |
+
)
|
244 |
+
for frame in frames:
|
245 |
+
if args.out:
|
246 |
+
video_writer.write(frame[:, :, ::-1])
|
247 |
+
|
248 |
+
if video_writer:
|
249 |
+
video_writer.release()
|
250 |
+
print('Done')
|
251 |
+
|
252 |
+
|
253 |
+
if __name__ == '__main__':
|
254 |
+
main()
|