Spaces:
Sleeping
Sleeping
File size: 6,919 Bytes
a22388a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "M74Gs_TjYl_B"
},
"source": [
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Winfredy/SadTalker/blob/main/quick_demo.ipynb)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "view-in-github"
},
"source": [
"### SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation \n",
"\n",
"[arxiv](https://arxiv.org/abs/2211.12194) | [project](https://sadtalker.github.io) | [Github](https://github.com/Winfredy/SadTalker)\n",
"\n",
"Wenxuan Zhang, Xiaodong Cun, Xuan Wang, Yong Zhang, Xi Shen, Yu Guo, Ying Shan, Fei Wang.\n",
"\n",
"Xi'an Jiaotong University, Tencent AI Lab, Ant Group\n",
"\n",
"CVPR 2023\n",
"\n",
"TL;DR: A realistic and stylized talking head video generation method from a single image and audio\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "kA89DV-sKS4i"
},
"source": [
"Installation (around 5 mins)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qJ4CplXsYl_E"
},
"outputs": [],
"source": [
"### make sure that CUDA is available in Edit -> Nootbook settings -> GPU\n",
"!nvidia-smi --query-gpu=name,memory.total,memory.free --format=csv,noheader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Mdq6j4E5KQAR"
},
"outputs": [],
"source": [
"!update-alternatives --install /usr/local/bin/python3 python3 /usr/bin/python3.8 2\n",
"!update-alternatives --install /usr/local/bin/python3 python3 /usr/bin/python3.9 1\n",
"!sudo apt install python3.8\n",
"\n",
"!sudo apt-get install python3.8-distutils\n",
"\n",
"!python --version\n",
"\n",
"!apt-get update\n",
"\n",
"!apt install software-properties-common\n",
"\n",
"!sudo dpkg --remove --force-remove-reinstreq python3-pip python3-setuptools python3-wheel\n",
"\n",
"!apt-get install python3-pip\n",
"\n",
"print('Git clone project and install requirements...')\n",
"!git clone https://github.com/Winfredy/SadTalker &> /dev/null\n",
"%cd SadTalker\n",
"!export PYTHONPATH=/content/SadTalker:$PYTHONPATH\n",
"!python3.8 -m pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113\n",
"!apt update\n",
"!apt install ffmpeg &> /dev/null\n",
"!python3.8 -m pip install -r requirements.txt"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "DddcKB_nKsnk"
},
"source": [
"Download models (1 mins)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "eDw3_UN8K2xa"
},
"outputs": [],
"source": [
"print('Download pre-trained models...')\n",
"!rm -rf checkpoints\n",
"!bash scripts/download_models.sh"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kK7DYeo7Yl_H"
},
"outputs": [],
"source": [
"# borrow from makeittalk\n",
"import ipywidgets as widgets\n",
"import glob\n",
"import matplotlib.pyplot as plt\n",
"print(\"Choose the image name to animate: (saved in folder 'examples/')\")\n",
"img_list = glob.glob1('examples/source_image', '*.png')\n",
"img_list.sort()\n",
"img_list = [item.split('.')[0] for item in img_list]\n",
"default_head_name = widgets.Dropdown(options=img_list, value='full3')\n",
"def on_change(change):\n",
" if change['type'] == 'change' and change['name'] == 'value':\n",
" plt.imshow(plt.imread('examples/source_image/{}.png'.format(default_head_name.value)))\n",
" plt.axis('off')\n",
" plt.show()\n",
"default_head_name.observe(on_change)\n",
"display(default_head_name)\n",
"plt.imshow(plt.imread('examples/source_image/{}.png'.format(default_head_name.value)))\n",
"plt.axis('off')\n",
"plt.show()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "-khNZcnGK4UK"
},
"source": [
"Animation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ToBlDusjK5sS"
},
"outputs": [],
"source": [
"# selected audio from exmaple/driven_audio\n",
"img = 'examples/source_image/{}.png'.format(default_head_name.value)\n",
"print(img)\n",
"!python3.8 inference.py --driven_audio ./examples/driven_audio/RD_Radio31_000.wav \\\n",
" --source_image {img} \\\n",
" --result_dir ./results --still --preprocess full --enhancer gfpgan"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fAjwGmKKYl_I"
},
"outputs": [],
"source": [
"# visualize code from makeittalk\n",
"from IPython.display import HTML\n",
"from base64 import b64encode\n",
"import os, sys\n",
"\n",
"# get the last from results\n",
"\n",
"results = sorted(os.listdir('./results/'))\n",
"\n",
"mp4_name = glob.glob('./results/*.mp4')[0]\n",
"\n",
"mp4 = open('{}'.format(mp4_name),'rb').read()\n",
"data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
"\n",
"print('Display animation: {}'.format(mp4_name), file=sys.stderr)\n",
"display(HTML(\"\"\"\n",
" <video width=256 controls>\n",
" <source src=\"%s\" type=\"video/mp4\">\n",
" </video>\n",
" \"\"\" % data_url))\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.9.7"
},
"vscode": {
"interpreter": {
"hash": "db5031b3636a3f037ea48eb287fd3d023feb9033aefc2a9652a92e470fb0851b"
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|