SadTalkerGitHub / src /generate_batch.py
Hebatullah's picture
Upload 204 files
a22388a verified
raw
history blame
4.45 kB
import os
from tqdm import tqdm
import torch
import numpy as np
import random
import scipy.io as scio
import src.utils.audio as audio
def crop_pad_audio(wav, audio_length):
if len(wav) > audio_length:
wav = wav[:audio_length]
elif len(wav) < audio_length:
wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0)
return wav
def parse_audio_length(audio_length, sr, fps):
bit_per_frames = sr / fps
num_frames = int(audio_length / bit_per_frames)
audio_length = int(num_frames * bit_per_frames)
return audio_length, num_frames
def generate_blink_seq(num_frames):
ratio = np.zeros((num_frames,1))
frame_id = 0
while frame_id in range(num_frames):
start = 80
if frame_id+start+9<=num_frames - 1:
ratio[frame_id+start:frame_id+start+9, 0] = [0.5,0.6,0.7,0.9,1, 0.9, 0.7,0.6,0.5]
frame_id = frame_id+start+9
else:
break
return ratio
def generate_blink_seq_randomly(num_frames):
ratio = np.zeros((num_frames,1))
if num_frames<=20:
return ratio
frame_id = 0
while frame_id in range(num_frames):
start = random.choice(range(min(10,num_frames), min(int(num_frames/2), 70)))
if frame_id+start+5<=num_frames - 1:
ratio[frame_id+start:frame_id+start+5, 0] = [0.5, 0.9, 1.0, 0.9, 0.5]
frame_id = frame_id+start+5
else:
break
return ratio
def get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=False, idlemode=False, length_of_audio=False, use_blink=True):
syncnet_mel_step_size = 16
fps = 25
pic_name = os.path.splitext(os.path.split(first_coeff_path)[-1])[0]
audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0]
if idlemode:
num_frames = int(length_of_audio * 25)
indiv_mels = np.zeros((num_frames, 80, 16))
else:
wav = audio.load_wav(audio_path, 16000)
wav_length, num_frames = parse_audio_length(len(wav), 16000, 25)
wav = crop_pad_audio(wav, wav_length)
orig_mel = audio.melspectrogram(wav).T
spec = orig_mel.copy() # nframes 80
indiv_mels = []
for i in tqdm(range(num_frames), 'mel:'):
start_frame_num = i-2
start_idx = int(80. * (start_frame_num / float(fps)))
end_idx = start_idx + syncnet_mel_step_size
seq = list(range(start_idx, end_idx))
seq = [ min(max(item, 0), orig_mel.shape[0]-1) for item in seq ]
m = spec[seq, :]
indiv_mels.append(m.T)
indiv_mels = np.asarray(indiv_mels) # T 80 16
ratio = generate_blink_seq_randomly(num_frames) # T
source_semantics_path = first_coeff_path
source_semantics_dict = scio.loadmat(source_semantics_path)
ref_coeff = source_semantics_dict['coeff_3dmm'][:1,:70] #1 70
ref_coeff = np.repeat(ref_coeff, num_frames, axis=0)
if ref_eyeblink_coeff_path is not None:
ratio[:num_frames] = 0
refeyeblink_coeff_dict = scio.loadmat(ref_eyeblink_coeff_path)
refeyeblink_coeff = refeyeblink_coeff_dict['coeff_3dmm'][:,:64]
refeyeblink_num_frames = refeyeblink_coeff.shape[0]
if refeyeblink_num_frames<num_frames:
div = num_frames//refeyeblink_num_frames
re = num_frames%refeyeblink_num_frames
refeyeblink_coeff_list = [refeyeblink_coeff for i in range(div)]
refeyeblink_coeff_list.append(refeyeblink_coeff[:re, :64])
refeyeblink_coeff = np.concatenate(refeyeblink_coeff_list, axis=0)
print(refeyeblink_coeff.shape[0])
ref_coeff[:, :64] = refeyeblink_coeff[:num_frames, :64]
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1).unsqueeze(0) # bs T 1 80 16
if use_blink:
ratio = torch.FloatTensor(ratio).unsqueeze(0) # bs T
else:
ratio = torch.FloatTensor(ratio).unsqueeze(0).fill_(0.)
# bs T
ref_coeff = torch.FloatTensor(ref_coeff).unsqueeze(0) # bs 1 70
indiv_mels = indiv_mels.to(device)
ratio = ratio.to(device)
ref_coeff = ref_coeff.to(device)
return {'indiv_mels': indiv_mels,
'ref': ref_coeff,
'num_frames': num_frames,
'ratio_gt': ratio,
'audio_name': audio_name, 'pic_name': pic_name}