File size: 5,999 Bytes
09fa6ac cd39c08 09fa6ac c60bd9d 09fa6ac cd39c08 e677307 de8ac53 e677307 cd39c08 e677307 09fa6ac cd39c08 39167cc cd39c08 c9be37f cd39c08 09fa6ac cd39c08 09fa6ac c60bd9d 09fa6ac 9402170 3a6bc2d 9402170 1d22096 09fa6ac 3a6bc2d 09fa6ac 3a6bc2d fd8a02a 09fa6ac 3a6bc2d fd8a02a 09fa6ac 1d22096 cd39c08 eb7cad2 cd39c08 eb7cad2 0792a15 cd39c08 c60bd9d cd39c08 c60bd9d 1553d93 c60bd9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio as gr
import torch
import spaces
from diffusers import DiffusionPipeline
from pathlib import Path
import gc
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
subprocess.run('pip cache purge', shell=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_grad_enabled(False)
models = [
"camenduru/FLUX.1-dev-diffusers",
"black-forest-labs/FLUX.1-schnell",
"sayakpaul/FLUX.1-merged",
"John6666/blue-pencil-flux1-v001-fp8-flux",
"John6666/copycat-flux-test-fp8-v11-fp8-flux",
"John6666/nepotism-fuxdevschnell-v3aio-fp8-flux",
"John6666/niji-style-flux-devfp8-fp8-flux",
"John6666/fluxunchained-artfulnsfw-fut516xfp8e4m3fnv11-fp8-flux",
"John6666/fastflux-unchained-t5f16-fp8-flux",
"John6666/the-araminta-flux1a1-fp8-flux",
"John6666/acorn-is-spinning-flux-v11-fp8-flux",
"John6666/fluxescore-dev-v10fp16-fp8-flux",
# "",
]
num_loras = 3
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
def is_repo_exists(repo_id):
from huggingface_hub import HfApi
api = HfApi()
try:
if api.repo_exists(repo_id=repo_id): return True
else: return False
except Exception as e:
print(f"Error: Failed to connect {repo_id}. ")
print(e)
return True # for safe
def clear_cache():
torch.cuda.empty_cache()
gc.collect()
def get_repo_safetensors(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
try:
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
files = api.list_repo_files(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
return gr.update(choices=[])
files = [f for f in files if f.endswith(".safetensors")]
if len(files) == 0: return gr.update(value="", choices=[])
else: return gr.update(value=files[0], choices=files)
# Initialize the base model
base_model = models[0]
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
last_model = models[0]
def change_base_model(repo_id: str, progress=gr.Progress(track_tqdm=True)):
global pipe
global last_model
try:
if repo_id == last_model or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return
progress(0, desc=f"Loading model: {repo_id}")
clear_cache()
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
last_model = repo_id
progress(1, desc=f"Model loaded: {repo_id}")
except Exception as e:
print(e)
return gr.update(visible=True)
def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str):
lorajson[i]["name"] = str(name) if name != "None" else ""
lorajson[i]["scale"] = float(scale)
lorajson[i]["filename"] = str(filename)
lorajson[i]["trigger"] = str(trigger)
return lorajson
def is_valid_lora(lorajson: list[dict]):
valid = False
for d in lorajson:
if "name" in d.keys() and d["name"] and d["name"] != "None": valid = True
return valid
def get_trigger_word(lorajson: list[dict]):
trigger = ""
for d in lorajson:
if "name" in d.keys() and d["name"] and d["name"] != "None" and d["trigger"]:
trigger += ", " + d["trigger"]
return trigger
# https://huggingface.co/docs/diffusers/v0.23.1/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora
# https://github.com/huggingface/diffusers/issues/4919
def fuse_loras(pipe, lorajson: list[dict]):
if not lorajson or not isinstance(lorajson, list): return
a_list = []
w_list = []
for d in lorajson:
if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None": continue
k = d["name"]
if is_repo_name(k) and is_repo_exists(k):
a_name = Path(k).stem
pipe.load_lora_weights(k, weight_name=d["filename"], adapter_name = a_name)
elif not Path(k).exists():
print(f"LoRA not found: {k}")
continue
else:
w_name = Path(k).name
a_name = Path(k).stem
pipe.load_lora_weights(k, weight_name = w_name, adapter_name = a_name)
a_list.append(a_name)
w_list.append(d["scale"])
if not a_list: return
pipe.set_adapters(a_list, adapter_weights=w_list)
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
#pipe.unload_lora_weights()
def description_ui():
gr.Markdown(
"""
- Mod of [multimodalart/flux-lora-the-explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer),
[gokaygokay/FLUX-Prompt-Generator](https://huggingface.co/spaces/gokaygokay/FLUX-Prompt-Generator).
"""
)
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
def load_prompt_enhancer():
try:
model_checkpoint = "gokaygokay/Flux-Prompt-Enhance"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).eval().to(device=device)
enhancer_flux = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty=1.5, device=device)
except Exception as e:
print(e)
enhancer_flux = None
return enhancer_flux
enhancer_flux = load_prompt_enhancer()
@spaces.GPU(duration=30)
def enhance_prompt(input_prompt):
result = enhancer_flux("enhance prompt: " + input_prompt, max_length = 256)
enhanced_text = result[0]['generated_text']
return enhanced_text
load_prompt_enhancer.zerogpu = True
change_base_model.zerogpu = True
fuse_loras.zerogpu = True |