File size: 11,950 Bytes
09fa6ac 5302530 cd39c08 09fa6ac f1d6334 09fa6ac c60bd9d 09fa6ac cd39c08 5764354 f2884b5 cd39c08 e677307 de8ac53 e677307 5764354 cd39c08 e677307 f2884b5 e677307 09fa6ac cd39c08 f1d6334 cd39c08 dc1b7f5 cd39c08 39167cc cd39c08 c9be37f cd39c08 09fa6ac f0c3651 0518209 f0c3651 09fa6ac cd39c08 09fa6ac c60bd9d 09fa6ac dc1b7f5 f1d6334 8ac6201 f1d6334 8ac6201 f1d6334 8ac6201 f1d6334 8ac6201 f1d6334 5302530 dc1b7f5 f1d6334 a138792 f1d6334 d0d2198 f1d6334 dc1b7f5 f1d6334 dc1b7f5 f1d6334 dc1b7f5 d0d2198 f1d6334 d0d2198 f1d6334 d0d2198 f1d6334 cd39c08 f1d6334 eb7cad2 cd39c08 d0d2198 cd39c08 d0d2198 cd39c08 eb7cad2 0792a15 cd39c08 8ac6201 f1d6334 cd39c08 c60bd9d 1553d93 c60bd9d 8ac6201 f0c3651 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import gradio as gr
import torch
import spaces
from pathlib import Path
import gc
import subprocess
from PIL import Image
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
subprocess.run('pip cache purge', shell=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_grad_enabled(False)
models = [
"camenduru/FLUX.1-dev-diffusers",
"black-forest-labs/FLUX.1-schnell",
"sayakpaul/FLUX.1-merged",
"John6666/hyper-flux1-dev-fp8-flux",
"John6666/flux1-dev-minus-v1-fp8-flux",
"John6666/blue-pencil-flux1-v001-fp8-flux",
"John6666/copycat-flux-test-fp8-v11-fp8-flux",
"John6666/nepotism-fuxdevschnell-v3aio-fp8-flux",
"John6666/niji-style-flux-devfp8-fp8-flux",
"John6666/lyh-dalle-anime-v12dalle-fp8-flux",
"John6666/fluxunchained-artfulnsfw-fut516xfp8e4m3fnv11-fp8-flux",
"John6666/fastflux-unchained-t5f16-fp8-flux",
"John6666/iniverse-mix-xl-sfwnsfw-fluxdfp8v10-fp8-flux",
"John6666/the-araminta-flux1a1-fp8-flux",
"John6666/acorn-is-spinning-flux-v11-fp8-flux",
"John6666/fluxescore-dev-v10fp16-fp8-flux",
# "",
]
num_loras = 3
num_cns = 2
control_images = [None] * num_cns
control_modes = [-1] * num_cns
control_scales = [0] * num_cns
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
def is_repo_exists(repo_id):
from huggingface_hub import HfApi
api = HfApi()
try:
if api.repo_exists(repo_id=repo_id): return True
else: return False
except Exception as e:
print(f"Error: Failed to connect {repo_id}. ")
print(e)
return True # for safe
def clear_cache():
torch.cuda.empty_cache()
gc.collect()
def deselect_lora():
selected_index = None
new_placeholder = "Type a prompt"
updated_text = ""
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
selected_index,
width,
height,
)
def get_repo_safetensors(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
try:
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
files = api.list_repo_files(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
return gr.update(choices=[])
files = [f for f in files if f.endswith(".safetensors")]
if len(files) == 0: return gr.update(value="", choices=[])
else: return gr.update(value=files[0], choices=files)
def expand2square(pil_img: Image.Image, background_color: tuple=(0, 0, 0)):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
# https://huggingface.co/spaces/DamarJati/FLUX.1-DEV-Canny/blob/main/app.py
def resize_image(image, target_width, target_height, crop=True):
from image_datasets.canny_dataset import c_crop
if crop:
image = c_crop(image) # Crop the image to square
original_width, original_height = image.size
# Resize to match the target size without stretching
scale = max(target_width / original_width, target_height / original_height)
resized_width = int(scale * original_width)
resized_height = int(scale * original_height)
image = image.resize((resized_width, resized_height), Image.LANCZOS)
# Center crop to match the target dimensions
left = (resized_width - target_width) // 2
top = (resized_height - target_height) // 2
image = image.crop((left, top, left + target_width, top + target_height))
else:
image = image.resize((target_width, target_height), Image.LANCZOS)
return image
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union/blob/main/app.py
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
controlnet_union_modes = {
"None": -1,
#"scribble_hed": 0,
"canny": 0, # supported
"mlsd": 0, #supported
"tile": 1, #supported
"depth_midas": 2, # supported
"blur": 3, # supported
"openpose": 4, # supported
"gray": 5, # supported
"low_quality": 6, # supported
}
# https://github.com/pytorch/pytorch/issues/123834
def get_control_params():
from diffusers.utils import load_image
modes = []
images = []
scales = []
for i, mode in enumerate(control_modes):
if mode == -1 or control_images[i] is None: continue
modes.append(control_modes[i])
images.append(load_image(control_images[i]))
scales.append(control_scales[i])
return modes, images, scales
from preprocessor import Preprocessor
def preprocess_image(image: Image.Image, control_mode: str, height: int, width: int,
preprocess_resolution: int, progress=gr.Progress(track_tqdm=True)):
if control_mode == "None": return image
image_resolution = max(width, height)
image_before = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False)
# generated control_
progress(0, desc="start to generate control image")
print("start to generate control image")
preprocessor = Preprocessor()
if control_mode == "depth_midas":
preprocessor.load("Midas")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "openpose":
preprocessor.load("Openpose")
control_image = preprocessor(
image=image_before,
hand_and_face=True,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "canny":
preprocessor.load("Canny")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "mlsd":
preprocessor.load("MLSD")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "scribble_hed":
preprocessor.load("HED")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "low_quality" or control_mode == "gray" or control_mode == "blur" or control_mode == "tile":
control_image = image_before
image_width = 768
image_height = 768
else:
# make sure control image size is same as resized_image
image_width, image_height = control_image.size
image_after = resize_image(control_image, width, height, False)
ref_width, ref_height = image.size
progress(1, desc=f"generate control image success: {ref_width}x{ref_height} => {image_width}x{image_height}")
print(f"generate control image success: {ref_width}x{ref_height} => {image_width}x{image_height}")
return image_after
def get_control_union_mode():
return list(controlnet_union_modes.keys())
def set_control_union_mode(i: int, mode: str, scale: str):
global control_modes
global control_scales
control_modes[i] = controlnet_union_modes.get(mode, 0)
control_scales[i] = scale
if mode != "None": return True
else: return gr.update(visible=True)
def set_control_union_image(i: int, mode: str, image: Image.Image | None, height: int, width: int, preprocess_resolution: int):
global control_images
if image is None: return None
control_images[i] = preprocess_image(image, mode, height, width, preprocess_resolution)
return control_images[i]
def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str):
lorajson[i]["name"] = str(name) if name != "None" else ""
lorajson[i]["scale"] = float(scale)
lorajson[i]["filename"] = str(filename)
lorajson[i]["trigger"] = str(trigger)
return lorajson
def is_valid_lora(lorajson: list[dict]):
valid = False
for d in lorajson:
if "name" in d.keys() and d["name"] and d["name"] != "None": valid = True
return valid
def get_trigger_word(lorajson: list[dict]):
trigger = ""
for d in lorajson:
if "name" in d.keys() and d["name"] and d["name"] != "None" and d["trigger"]:
trigger += ", " + d["trigger"]
return trigger
# https://huggingface.co/docs/diffusers/v0.23.1/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora
# https://github.com/huggingface/diffusers/issues/4919
def fuse_loras(pipe, lorajson: list[dict], progress=gr.Progress(track_tqdm=True)):
if not lorajson or not isinstance(lorajson, list): return
progress(0, desc="Fusing LoRA.")
a_list = []
w_list = []
for d in lorajson:
if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None": continue
k = d["name"]
if is_repo_name(k) and is_repo_exists(k):
a_name = Path(k).stem
pipe.load_lora_weights(k, weight_name=d["filename"], adapter_name = a_name)
elif not Path(k).exists():
print(f"LoRA not found: {k}")
continue
else:
w_name = Path(k).name
a_name = Path(k).stem
pipe.load_lora_weights(k, weight_name = w_name, adapter_name = a_name)
a_list.append(a_name)
w_list.append(d["scale"])
if not a_list: return
pipe.set_adapters(a_list, adapter_weights=w_list)
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
#pipe.unload_lora_weights()
def description_ui():
gr.Markdown(
"""
- Mod of [multimodalart/flux-lora-the-explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer),
[jiuface/FLUX.1-dev-Controlnet-Union](https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union),
[DamarJati/FLUX.1-DEV-Canny](https://huggingface.co/spaces/DamarJati/FLUX.1-DEV-Canny),
[gokaygokay/FLUX-Prompt-Generator](https://huggingface.co/spaces/gokaygokay/FLUX-Prompt-Generator).
"""
)
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
def load_prompt_enhancer():
try:
model_checkpoint = "gokaygokay/Flux-Prompt-Enhance"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).eval().to(device=device)
enhancer_flux = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty=1.5, device=device)
except Exception as e:
print(e)
enhancer_flux = None
return enhancer_flux
enhancer_flux = load_prompt_enhancer()
@spaces.GPU(duration=30)
def enhance_prompt(input_prompt):
result = enhancer_flux("enhance prompt: " + input_prompt, max_length = 256)
enhanced_text = result[0]['generated_text']
return enhanced_text
load_prompt_enhancer.zerogpu = True
fuse_loras.zerogpu = True
preprocess_image.zerogpu = True
get_control_params.zerogpu = True
|