|
import gradio as gr
|
|
import torch
|
|
import spaces
|
|
from diffusers import DiffusionPipeline
|
|
from pathlib import Path
|
|
import gc
|
|
import subprocess
|
|
|
|
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
subprocess.run('pip cache purge', shell=True)
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
torch.set_grad_enabled(False)
|
|
|
|
|
|
models = [
|
|
"camenduru/FLUX.1-dev-diffusers",
|
|
"black-forest-labs/FLUX.1-schnell",
|
|
"sayakpaul/FLUX.1-merged",
|
|
"John6666/blue-pencil-flux1-v001-fp8-flux",
|
|
"John6666/copycat-flux-test-fp8-v11-fp8-flux",
|
|
"John6666/nepotism-fuxdevschnell-v3aio-fp8-flux",
|
|
"John6666/niji-style-flux-devfp8-fp8-flux",
|
|
"John6666/fluxunchained-artfulnsfw-fut516xfp8e4m3fnv11-fp8-flux",
|
|
"John6666/fastflux-unchained-t5f16-fp8-flux",
|
|
"John6666/the-araminta-flux1a1-fp8-flux",
|
|
"John6666/acorn-is-spinning-flux-v11-fp8-flux",
|
|
"John6666/fluxescore-dev-v10fp16-fp8-flux",
|
|
|
|
]
|
|
|
|
|
|
num_loras = 3
|
|
|
|
|
|
def is_repo_name(s):
|
|
import re
|
|
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
|
|
|
|
|
def is_repo_exists(repo_id):
|
|
from huggingface_hub import HfApi
|
|
api = HfApi()
|
|
try:
|
|
if api.repo_exists(repo_id=repo_id): return True
|
|
else: return False
|
|
except Exception as e:
|
|
print(f"Error: Failed to connect {repo_id}. ")
|
|
print(e)
|
|
return True
|
|
|
|
|
|
def clear_cache():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
def get_repo_safetensors(repo_id: str):
|
|
from huggingface_hub import HfApi
|
|
api = HfApi()
|
|
try:
|
|
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
|
|
files = api.list_repo_files(repo_id=repo_id)
|
|
except Exception as e:
|
|
print(f"Error: Failed to get {repo_id}'s info.")
|
|
print(e)
|
|
return gr.update(choices=[])
|
|
files = [f for f in files if f.endswith(".safetensors")]
|
|
if len(files) == 0: return gr.update(value="", choices=[])
|
|
else: return gr.update(value=files[0], choices=files)
|
|
|
|
|
|
|
|
base_model = models[0]
|
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
|
last_model = models[0]
|
|
|
|
def change_base_model(repo_id: str, progress=gr.Progress(track_tqdm=True)):
|
|
global pipe
|
|
global last_model
|
|
try:
|
|
if repo_id == last_model or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return
|
|
progress(0, desc=f"Loading model: {repo_id}")
|
|
clear_cache()
|
|
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
|
last_model = repo_id
|
|
progress(1, desc=f"Model loaded: {repo_id}")
|
|
except Exception as e:
|
|
print(e)
|
|
return gr.update(visible=True)
|
|
|
|
|
|
def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str):
|
|
lorajson[i]["name"] = str(name) if name != "None" else ""
|
|
lorajson[i]["scale"] = float(scale)
|
|
lorajson[i]["filename"] = str(filename)
|
|
lorajson[i]["trigger"] = str(trigger)
|
|
return lorajson
|
|
|
|
|
|
def is_valid_lora(lorajson: list[dict]):
|
|
valid = False
|
|
for d in lorajson:
|
|
if "name" in d.keys() and d["name"] and d["name"] != "None": valid = True
|
|
return valid
|
|
|
|
|
|
def get_trigger_word(lorajson: list[dict]):
|
|
trigger = ""
|
|
for d in lorajson:
|
|
if "name" in d.keys() and d["name"] and d["name"] != "None" and d["trigger"]:
|
|
trigger += ", " + d["trigger"]
|
|
return trigger
|
|
|
|
|
|
|
|
def fuse_loras(pipe, lorajson: list[dict]):
|
|
if not lorajson or not isinstance(lorajson, list): return
|
|
a_list = []
|
|
w_list = []
|
|
for d in lorajson:
|
|
if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None": continue
|
|
k = d["name"]
|
|
if is_repo_name(k) and is_repo_exists(k):
|
|
a_name = Path(k).stem
|
|
pipe.load_lora_weights(k, weight_name=d["filename"], adapter_name = a_name)
|
|
elif not Path(k).exists():
|
|
print(f"LoRA not found: {k}")
|
|
continue
|
|
else:
|
|
w_name = Path(k).name
|
|
a_name = Path(k).stem
|
|
pipe.load_lora_weights(k, weight_name = w_name, adapter_name = a_name)
|
|
a_list.append(a_name)
|
|
w_list.append(d["scale"])
|
|
if not a_list: return
|
|
pipe.set_adapters(a_list, adapter_weights=w_list)
|
|
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def description_ui():
|
|
gr.Markdown(
|
|
"""
|
|
- Mod of [multimodalart/flux-lora-the-explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer),
|
|
[gokaygokay/FLUX-Prompt-Generator](https://huggingface.co/spaces/gokaygokay/FLUX-Prompt-Generator).
|
|
"""
|
|
)
|
|
|
|
|
|
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
|
def load_prompt_enhancer():
|
|
try:
|
|
model_checkpoint = "gokaygokay/Flux-Prompt-Enhance"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).eval().to(device=device)
|
|
enhancer_flux = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty=1.5, device=device)
|
|
except Exception as e:
|
|
print(e)
|
|
enhancer_flux = None
|
|
return enhancer_flux
|
|
|
|
|
|
enhancer_flux = load_prompt_enhancer()
|
|
|
|
|
|
def enhance_prompt(input_prompt):
|
|
result = enhancer_flux("enhance prompt: " + input_prompt, max_length = 256)
|
|
enhanced_text = result[0]['generated_text']
|
|
return enhanced_text
|
|
|
|
|
|
load_prompt_enhancer.zerogpu = True
|
|
change_base_model.zerogpu = True
|
|
fuse_loras.zerogpu = True |