Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import json | |
import gradio as gr | |
from huggingface_hub import HfApi | |
import os | |
from pathlib import Path | |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2, | |
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES, | |
directory_loras, hf_read_token, hf_token, CIVITAI_API_KEY) | |
def get_user_agent(): | |
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0' | |
def to_list(s): | |
return [x.strip() for x in s.split(",") if not s == ""] | |
def list_uniq(l): | |
return sorted(set(l), key=l.index) | |
def list_sub(a, b): | |
return [e for e in a if e not in b] | |
from translatepy import Translator | |
translator = Translator() | |
def translate_to_en(input: str): | |
try: | |
output = str(translator.translate(input, 'English')) | |
except Exception as e: | |
output = input | |
print(e) | |
return output | |
def get_local_model_list(dir_path): | |
model_list = [] | |
valid_extensions = ('.ckpt', '.pt', '.pth', '.safetensors', '.bin') | |
for file in Path(dir_path).glob("*"): | |
if file.suffix in valid_extensions: | |
file_path = str(Path(f"{dir_path}/{file.name}")) | |
model_list.append(file_path) | |
return model_list | |
def download_things(directory, url, hf_token="", civitai_api_key=""): | |
url = url.strip() | |
if "drive.google.com" in url: | |
original_dir = os.getcwd() | |
os.chdir(directory) | |
os.system(f"gdown --fuzzy {url}") | |
os.chdir(original_dir) | |
elif "huggingface.co" in url: | |
url = url.replace("?download=true", "") | |
# url = urllib.parse.quote(url, safe=':/') # fix encoding | |
if "/blob/" in url: | |
url = url.replace("/blob/", "/resolve/") | |
user_header = f'"Authorization: Bearer {hf_token}"' | |
if hf_token: | |
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}") | |
else: | |
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}") | |
elif "civitai.com" in url: | |
if "?" in url: | |
url = url.split("?")[0] | |
if civitai_api_key: | |
url = url + f"?token={civitai_api_key}" | |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") | |
else: | |
print("\033[91mYou need an API key to download Civitai models.\033[0m") | |
else: | |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") | |
def escape_lora_basename(basename: str): | |
return basename.replace(".", "_").replace(" ", "_").replace(",", "") | |
def to_lora_key(path: str): | |
return escape_lora_basename(Path(path).stem) | |
def to_lora_path(key: str): | |
if Path(key).is_file(): return key | |
path = Path(f"{directory_loras}/{escape_lora_basename(key)}.safetensors") | |
return str(path) | |
def safe_float(input): | |
output = 1.0 | |
try: | |
output = float(input) | |
except Exception: | |
output = 1.0 | |
return output | |
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)): | |
from datetime import datetime, timezone, timedelta | |
progress(0, desc="Updating gallery...") | |
dt_now = datetime.now(timezone(timedelta(hours=9))) | |
basename = dt_now.strftime('%Y%m%d_%H%M%S_') | |
i = 1 | |
if not images: return images | |
output_images = [] | |
output_paths = [] | |
for image in images: | |
filename = basename + str(i) + ".png" | |
i += 1 | |
oldpath = Path(image[0]) | |
newpath = oldpath | |
try: | |
if oldpath.exists(): | |
newpath = oldpath.resolve().rename(Path(filename).resolve()) | |
except Exception as e: | |
print(e) | |
finally: | |
output_paths.append(str(newpath)) | |
output_images.append((str(newpath), str(filename))) | |
progress(1, desc="Gallery updated.") | |
return gr.update(value=output_images), gr.update(value=output_paths), gr.update(visible=True) | |
def download_private_repo(repo_id, dir_path, is_replace): | |
from huggingface_hub import snapshot_download | |
if not hf_read_token: return | |
try: | |
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token) | |
except Exception as e: | |
print(f"Error: Failed to download {repo_id}.") | |
print(e) | |
return | |
if is_replace: | |
for file in Path(dir_path).glob("*"): | |
if file.exists() and "." in file.stem or " " in file.stem and file.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']: | |
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') | |
file.resolve().rename(newpath.resolve()) | |
private_model_path_repo_dict = {} # {"local filepath": "huggingface repo_id", ...} | |
def get_private_model_list(repo_id, dir_path): | |
global private_model_path_repo_dict | |
api = HfApi() | |
if not hf_read_token: return [] | |
try: | |
files = api.list_repo_files(repo_id, token=hf_read_token) | |
except Exception as e: | |
print(f"Error: Failed to list {repo_id}.") | |
print(e) | |
return [] | |
model_list = [] | |
for file in files: | |
path = Path(f"{dir_path}/{file}") | |
if path.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']: | |
model_list.append(str(path)) | |
for model in model_list: | |
private_model_path_repo_dict[model] = repo_id | |
return model_list | |
def download_private_file(repo_id, path, is_replace): | |
from huggingface_hub import hf_hub_download | |
file = Path(path) | |
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file | |
if not hf_read_token or newpath.exists(): return | |
filename = file.name | |
dirname = file.parent.name | |
try: | |
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=dirname, use_auth_token=hf_read_token) | |
except Exception as e: | |
print(f"Error: Failed to download {filename}.") | |
print(e) | |
return | |
if is_replace: | |
file.resolve().rename(newpath.resolve()) | |
def download_private_file_from_somewhere(path, is_replace): | |
if not path in private_model_path_repo_dict.keys(): return | |
repo_id = private_model_path_repo_dict.get(path, None) | |
download_private_file(repo_id, path, is_replace) | |
model_id_list = [] | |
def get_model_id_list(): | |
global model_id_list | |
if len(model_id_list) != 0: return model_id_list | |
api = HfApi() | |
model_ids = [] | |
try: | |
models_likes = [] | |
for author in HF_MODEL_USER_LIKES: | |
models_likes.extend(api.list_models(author=author, task="text-to-image", cardData=True, sort="likes")) | |
models_ex = [] | |
for author in HF_MODEL_USER_EX: | |
models_ex = api.list_models(author=author, task="text-to-image", cardData=True, sort="last_modified") | |
except Exception as e: | |
print(f"Error: Failed to list {author}'s models.") | |
print(e) | |
return model_ids | |
for model in models_likes: | |
model_ids.append(model.id) if not model.private else "" | |
anime_models = [] | |
real_models = [] | |
for model in models_ex: | |
if not model.private and not model.gated and "diffusers:FluxPipeline" not in model.tags: | |
anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id) | |
model_ids.extend(anime_models) | |
model_ids.extend(real_models) | |
model_id_list = model_ids.copy() | |
return model_ids | |
model_id_list = get_model_id_list() | |
def get_t2i_model_info(repo_id: str): | |
api = HfApi() | |
try: | |
if " " in repo_id or not api.repo_exists(repo_id): return "" | |
model = api.model_info(repo_id=repo_id) | |
except Exception as e: | |
print(f"Error: Failed to get {repo_id}'s info.") | |
print(e) | |
return "" | |
if model.private or model.gated: return "" | |
tags = model.tags | |
info = [] | |
url = f"https://huggingface.co/{repo_id}/" | |
if not 'diffusers' in tags: return "" | |
if 'diffusers:FluxPipeline' in tags: info.append("FLUX.1") | |
elif 'diffusers:StableDiffusionXLPipeline' in tags: info.append("SDXL") | |
elif 'diffusers:StableDiffusionPipeline' in tags: info.append("SD1.5") | |
if model.card_data and model.card_data.tags: | |
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl'])) | |
info.append(f"DLs: {model.downloads}") | |
info.append(f"likes: {model.likes}") | |
info.append(model.last_modified.strftime("lastmod: %Y-%m-%d")) | |
md = f"Model Info: {', '.join(info)}, [Model Repo]({url})" | |
return gr.update(value=md) | |
def get_tupled_model_list(model_list): | |
if not model_list: return [] | |
tupled_list = [] | |
for repo_id in model_list: | |
api = HfApi() | |
try: | |
if not api.repo_exists(repo_id): continue | |
model = api.model_info(repo_id=repo_id) | |
except Exception as e: | |
print(e) | |
continue | |
if model.private or model.gated: continue | |
tags = model.tags | |
info = [] | |
if not 'diffusers' in tags: continue | |
if 'diffusers:FluxPipeline' in tags: | |
info.append("FLUX.1") | |
if 'diffusers:StableDiffusionXLPipeline' in tags: | |
info.append("SDXL") | |
elif 'diffusers:StableDiffusionPipeline' in tags: | |
info.append("SD1.5") | |
if model.card_data and model.card_data.tags: | |
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl'])) | |
if "pony" in info: | |
info.remove("pony") | |
name = f"{repo_id} (Pony🐴, {', '.join(info)})" | |
else: | |
name = f"{repo_id} ({', '.join(info)})" | |
tupled_list.append((name, repo_id)) | |
return tupled_list | |
private_lora_dict = {} | |
try: | |
with open('lora_dict.json', encoding='utf-8') as f: | |
d = json.load(f) | |
for k, v in d.items(): | |
private_lora_dict[escape_lora_basename(k)] = v | |
except Exception as e: | |
print(e) | |
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy() | |
civitai_not_exists_list = [] | |
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...} | |
civitai_lora_last_results = {} # {"URL to download": {search results}, ...} | |
all_lora_list = [] | |
private_lora_model_list = [] | |
def get_private_lora_model_lists(): | |
global private_lora_model_list | |
if len(private_lora_model_list) != 0: return private_lora_model_list | |
models1 = [] | |
models2 = [] | |
for repo in HF_LORA_PRIVATE_REPOS1: | |
models1.extend(get_private_model_list(repo, directory_loras)) | |
for repo in HF_LORA_PRIVATE_REPOS2: | |
models2.extend(get_private_model_list(repo, directory_loras)) | |
models = list_uniq(models1 + sorted(models2)) | |
private_lora_model_list = models.copy() | |
return models | |
private_lora_model_list = get_private_lora_model_lists() | |
def get_civitai_info(path): | |
global civitai_not_exists_list | |
import requests | |
from urllib3.util import Retry | |
from requests.adapters import HTTPAdapter | |
if path in set(civitai_not_exists_list): return ["", "", "", "", ""] | |
if not Path(path).exists(): return None | |
user_agent = get_user_agent() | |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} | |
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/' | |
params = {} | |
session = requests.Session() | |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) | |
session.mount("https://", HTTPAdapter(max_retries=retries)) | |
import hashlib | |
with open(path, 'rb') as file: | |
file_data = file.read() | |
hash_sha256 = hashlib.sha256(file_data).hexdigest() | |
url = base_url + hash_sha256 | |
try: | |
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) | |
except Exception as e: | |
print(e) | |
return ["", "", "", "", ""] | |
if not r.ok: return None | |
json = r.json() | |
if not 'baseModel' in json: | |
civitai_not_exists_list.append(path) | |
return ["", "", "", "", ""] | |
items = [] | |
items.append(" / ".join(json['trainedWords'])) | |
items.append(json['baseModel']) | |
items.append(json['model']['name']) | |
items.append(f"https://civitai.com/models/{json['modelId']}") | |
items.append(json['images'][0]['url']) | |
return items | |
def get_lora_model_list(): | |
loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras)) | |
loras.insert(0, "None") | |
loras.insert(0, "") | |
return loras | |
def get_all_lora_list(): | |
global all_lora_list | |
loras = get_lora_model_list() | |
all_lora_list = loras.copy() | |
return loras | |
def get_all_lora_tupled_list(): | |
global loras_dict | |
models = get_all_lora_list() | |
if not models: return [] | |
tupled_list = [] | |
for model in models: | |
#if not model: continue # to avoid GUI-related bug | |
basename = Path(model).stem | |
key = to_lora_key(model) | |
items = None | |
if key in loras_dict.keys(): | |
items = loras_dict.get(key, None) | |
else: | |
items = get_civitai_info(model) | |
if items != None: | |
loras_dict[key] = items | |
name = basename | |
value = model | |
if items and items[2] != "": | |
if items[1] == "Pony": | |
name = f"{basename} (for {items[1]}🐴, {items[2]})" | |
else: | |
name = f"{basename} (for {items[1]}, {items[2]})" | |
tupled_list.append((name, value)) | |
return tupled_list | |
def update_lora_dict(path): | |
global loras_dict | |
key = escape_lora_basename(Path(path).stem) | |
if key in loras_dict.keys(): return | |
items = get_civitai_info(path) | |
if items == None: return | |
loras_dict[key] = items | |
def download_lora(dl_urls: str): | |
global loras_url_to_path_dict | |
dl_path = "" | |
before = get_local_model_list(directory_loras) | |
urls = [] | |
for url in [url.strip() for url in dl_urls.split(',')]: | |
local_path = f"{directory_loras}/{url.split('/')[-1]}" | |
if not Path(local_path).exists(): | |
download_things(directory_loras, url, hf_token, CIVITAI_API_KEY) | |
urls.append(url) | |
after = get_local_model_list(directory_loras) | |
new_files = list_sub(after, before) | |
i = 0 | |
for file in new_files: | |
path = Path(file) | |
if path.exists(): | |
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') | |
path.resolve().rename(new_path.resolve()) | |
loras_url_to_path_dict[urls[i]] = str(new_path) | |
update_lora_dict(str(new_path)) | |
dl_path = str(new_path) | |
i += 1 | |
return dl_path | |
def copy_lora(path: str, new_path: str): | |
import shutil | |
if path == new_path: return new_path | |
cpath = Path(path) | |
npath = Path(new_path) | |
if cpath.exists(): | |
try: | |
shutil.copy(str(cpath.resolve()), str(npath.resolve())) | |
except Exception as e: | |
print(e) | |
return None | |
update_lora_dict(str(npath)) | |
return new_path | |
else: | |
return None | |
def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str): | |
path = download_lora(dl_urls) | |
if path: | |
if not lora1 or lora1 == "None": | |
lora1 = path | |
elif not lora2 or lora2 == "None": | |
lora2 = path | |
elif not lora3 or lora3 == "None": | |
lora3 = path | |
elif not lora4 or lora4 == "None": | |
lora4 = path | |
elif not lora5 or lora5 == "None": | |
lora5 = path | |
choices = get_all_lora_tupled_list() | |
return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\ | |
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices) | |
def get_valid_lora_name(query: str): | |
path = "None" | |
if not query or query == "None": return "None" | |
if to_lora_key(query) in loras_dict.keys(): return query | |
if query in loras_url_to_path_dict.keys(): | |
path = loras_url_to_path_dict[query] | |
else: | |
path = to_lora_path(query.strip().split('/')[-1]) | |
if Path(path).exists(): | |
return path | |
elif "http" in query: | |
dl_file = download_lora(query) | |
if dl_file and Path(dl_file).exists(): return dl_file | |
else: | |
dl_file = find_similar_lora(query) | |
if dl_file and Path(dl_file).exists(): return dl_file | |
return "None" | |
def get_valid_lora_path(query: str): | |
path = None | |
if not query or query == "None": return None | |
if to_lora_key(query) in loras_dict.keys(): return query | |
if Path(path).exists(): | |
return path | |
else: | |
return None | |
def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float): | |
import re | |
wt = lora_wt | |
result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt) | |
if not result: return wt | |
wt = safe_float(result[0][0]) | |
return wt | |
def set_prompt_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt): | |
import re | |
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt | |
lora1 = get_valid_lora_name(lora1) | |
lora2 = get_valid_lora_name(lora2) | |
lora3 = get_valid_lora_name(lora3) | |
lora4 = get_valid_lora_name(lora4) | |
lora5 = get_valid_lora_name(lora5) | |
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt | |
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt) | |
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt) | |
lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt) | |
lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt) | |
lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt) | |
on1, label1, tag1, md1 = get_lora_info(lora1) | |
on2, label2, tag2, md2 = get_lora_info(lora2) | |
on3, label3, tag3, md3 = get_lora_info(lora3) | |
on4, label4, tag4, md4 = get_lora_info(lora4) | |
on5, label5, tag5, md5 = get_lora_info(lora5) | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
prompts = prompt.split(",") if prompt else [] | |
for p in prompts: | |
p = str(p).strip() | |
if "<lora" in p: | |
result = re.findall(r'<lora:(.+?):(.+?)>', p) | |
if not result: continue | |
key = result[0][0] | |
wt = result[0][1] | |
path = to_lora_path(key) | |
if not key in loras_dict.keys() or not path: | |
path = get_valid_lora_name(path) | |
if not path or path == "None": continue | |
if path in lora_paths: | |
continue | |
elif not on1: | |
lora1 = path | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
lora1_wt = safe_float(wt) | |
on1 = True | |
elif not on2: | |
lora2 = path | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
lora2_wt = safe_float(wt) | |
on2 = True | |
elif not on3: | |
lora3 = path | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
lora3_wt = safe_float(wt) | |
on3 = True | |
elif not on4: | |
lora4 = path | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
lora4_wt = safe_float(wt) | |
on4, label4, tag4, md4 = get_lora_info(lora4) | |
elif not on5: | |
lora5 = path | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
lora5_wt = safe_float(wt) | |
on5 = True | |
return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt | |
def get_lora_info(lora_path: str): | |
is_valid = False | |
tag = "" | |
label = "" | |
md = "None" | |
if not lora_path or lora_path == "None": | |
print("LoRA file not found.") | |
return is_valid, label, tag, md | |
path = Path(lora_path) | |
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') | |
if not to_lora_key(str(new_path)) in loras_dict.keys() and str(path) not in set(get_all_lora_list()): | |
print("LoRA file is not registered.") | |
return tag, label, tag, md | |
if not new_path.exists(): | |
download_private_file_from_somewhere(str(path), True) | |
basename = new_path.stem | |
label = f'Name: {basename}' | |
items = loras_dict.get(basename, None) | |
if items == None: | |
items = get_civitai_info(str(new_path)) | |
if items != None: | |
loras_dict[basename] = items | |
if items and items[2] != "": | |
tag = items[0] | |
label = f'Name: {basename}' | |
if items[1] == "Pony": | |
label = f'Name: {basename} (for Pony🐴)' | |
if items[4]: | |
md = f'<img src="{items[4]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL]({items[3]})' | |
elif items[3]: | |
md = f'[LoRA Model URL]({items[3]})' | |
is_valid = True | |
return is_valid, label, tag, md | |
def normalize_prompt_list(tags: list[str]): | |
prompts = [] | |
for tag in tags: | |
tag = str(tag).strip() | |
if tag: | |
prompts.append(tag) | |
return prompts | |
def apply_lora_prompt(prompt: str = "", lora_info: str = ""): | |
if lora_info == "None": return gr.update(value=prompt) | |
tags = prompt.split(",") if prompt else [] | |
prompts = normalize_prompt_list(tags) | |
lora_tag = lora_info.replace("/",",") | |
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else [] | |
lora_prompts = normalize_prompt_list(lora_tags) | |
empty = [""] | |
prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty) | |
return gr.update(value=prompt) | |
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt): | |
import re | |
on1, label1, tag1, md1 = get_lora_info(lora1) | |
on2, label2, tag2, md2 = get_lora_info(lora2) | |
on3, label3, tag3, md3 = get_lora_info(lora3) | |
on4, label4, tag4, md4 = get_lora_info(lora4) | |
on5, label5, tag5, md5 = get_lora_info(lora5) | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
output_prompt = prompt | |
if "Classic" in str(prompt_syntax): | |
prompts = prompt.split(",") if prompt else [] | |
output_prompts = [] | |
for p in prompts: | |
p = str(p).strip() | |
if "<lora" in p: | |
result = re.findall(r'<lora:(.+?):(.+?)>', p) | |
if not result: continue | |
key = result[0][0] | |
wt = result[0][1] | |
path = to_lora_path(key) | |
if not key in loras_dict.keys() or not path: continue | |
if path in lora_paths: | |
output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>") | |
elif p: | |
output_prompts.append(p) | |
lora_prompts = [] | |
if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>") | |
if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>") | |
if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>") | |
if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>") | |
if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>") | |
output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""])) | |
choices = get_all_lora_tupled_list() | |
return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\ | |
gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\ | |
gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\ | |
gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\ | |
gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\ | |
gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\ | |
gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\ | |
gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\ | |
gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\ | |
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5) | |
def get_my_lora(link_url): | |
from pathlib import Path | |
before = get_local_model_list(directory_loras) | |
for url in [url.strip() for url in link_url.split(',')]: | |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists(): | |
download_things(directory_loras, url, hf_token, CIVITAI_API_KEY) | |
after = get_local_model_list(directory_loras) | |
new_files = list_sub(after, before) | |
for file in new_files: | |
path = Path(file) | |
if path.exists(): | |
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') | |
path.resolve().rename(new_path.resolve()) | |
update_lora_dict(str(new_path)) | |
new_lora_model_list = get_lora_model_list() | |
new_lora_tupled_list = get_all_lora_tupled_list() | |
return gr.update( | |
choices=new_lora_tupled_list, value=new_lora_model_list[-1] | |
), gr.update( | |
choices=new_lora_tupled_list | |
), gr.update( | |
choices=new_lora_tupled_list | |
), gr.update( | |
choices=new_lora_tupled_list | |
), gr.update( | |
choices=new_lora_tupled_list | |
) | |
def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)): | |
progress(0, desc="Uploading...") | |
file_paths = [file.name for file in files] | |
progress(1, desc="Uploaded.") | |
return gr.update(value=file_paths, visible=True), gr.update(visible=True) | |
def move_file_lora(filepaths): | |
import shutil | |
for file in filepaths: | |
path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve())) | |
newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') | |
path.resolve().rename(newpath.resolve()) | |
update_lora_dict(str(newpath)) | |
new_lora_model_list = get_lora_model_list() | |
new_lora_tupled_list = get_all_lora_tupled_list() | |
return gr.update( | |
choices=new_lora_tupled_list, value=new_lora_model_list[-1] | |
), gr.update( | |
choices=new_lora_tupled_list | |
), gr.update( | |
choices=new_lora_tupled_list | |
), gr.update( | |
choices=new_lora_tupled_list | |
), gr.update( | |
choices=new_lora_tupled_list | |
) | |
def get_civitai_info(path): | |
global civitai_not_exists_list | |
global loras_url_to_path_dict | |
import requests | |
from requests.adapters import HTTPAdapter | |
from urllib3.util import Retry | |
default = ["", "", "", "", ""] | |
if path in set(civitai_not_exists_list): return default | |
if not Path(path).exists(): return None | |
user_agent = get_user_agent() | |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} | |
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/' | |
params = {} | |
session = requests.Session() | |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) | |
session.mount("https://", HTTPAdapter(max_retries=retries)) | |
import hashlib | |
with open(path, 'rb') as file: | |
file_data = file.read() | |
hash_sha256 = hashlib.sha256(file_data).hexdigest() | |
url = base_url + hash_sha256 | |
try: | |
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) | |
except Exception as e: | |
print(e) | |
return default | |
else: | |
if not r.ok: return None | |
json = r.json() | |
if 'baseModel' not in json: | |
civitai_not_exists_list.append(path) | |
return default | |
items = [] | |
items.append(" / ".join(json['trainedWords'])) # The words (prompts) used to trigger the model | |
items.append(json['baseModel']) # Base model (SDXL1.0, Pony, ...) | |
items.append(json['model']['name']) # The name of the model version | |
items.append(f"https://civitai.com/models/{json['modelId']}") # The repo url for the model | |
items.append(json['images'][0]['url']) # The url for a sample image | |
loras_url_to_path_dict[path] = json['downloadUrl'] # The download url to get the model file for this specific version | |
return items | |
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100): | |
import requests | |
from requests.adapters import HTTPAdapter | |
from urllib3.util import Retry | |
if not query: return None | |
user_agent = get_user_agent() | |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} | |
base_url = 'https://civitai.com/api/v1/models' | |
params = {'query': query, 'types': ['LORA'], 'sort': 'Highest Rated', 'period': 'AllTime', | |
'nsfw': 'true', 'supportsGeneration ': 'true', 'limit': limit} | |
session = requests.Session() | |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) | |
session.mount("https://", HTTPAdapter(max_retries=retries)) | |
try: | |
r = session.get(base_url, params=params, headers=headers, stream=True, timeout=(3.0, 30)) | |
except Exception as e: | |
print(e) | |
return None | |
else: | |
if not r.ok: return None | |
json = r.json() | |
if 'items' not in json: return None | |
items = [] | |
for j in json['items']: | |
for model in j['modelVersions']: | |
item = {} | |
if model['baseModel'] not in set(allow_model): continue | |
item['name'] = j['name'] | |
item['creator'] = j['creator']['username'] | |
item['tags'] = j['tags'] | |
item['model_name'] = model['name'] | |
item['base_model'] = model['baseModel'] | |
item['dl_url'] = model['downloadUrl'] | |
item['md'] = f'<img src="{model["images"][0]["url"]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL](https://civitai.com/models/{j["id"]})' | |
items.append(item) | |
return items | |
def search_civitai_lora(query, base_model): | |
global civitai_lora_last_results | |
items = search_lora_on_civitai(query, base_model) | |
if not items: return gr.update(choices=[("", "")], value="", visible=False),\ | |
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True) | |
civitai_lora_last_results = {} | |
choices = [] | |
for item in items: | |
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model'] | |
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})" | |
value = item['dl_url'] | |
choices.append((name, value)) | |
civitai_lora_last_results[value] = item | |
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\ | |
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True) | |
result = civitai_lora_last_results.get(choices[0][1], "None") | |
md = result['md'] if result else "" | |
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\ | |
gr.update(visible=True), gr.update(visible=True) | |
def select_civitai_lora(search_result): | |
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True) | |
result = civitai_lora_last_results.get(search_result, "None") | |
md = result['md'] if result else "" | |
return gr.update(value=search_result), gr.update(value=md, visible=True) | |
def find_similar_lora(q: str): | |
from rapidfuzz.process import extractOne | |
from rapidfuzz.utils import default_process | |
query = to_lora_key(q) | |
print(f"Finding <lora:{query}:...>...") | |
keys = list(private_lora_dict.keys()) | |
values = [x[2] for x in list(private_lora_dict.values())] | |
s = default_process(query) | |
e1 = extractOne(s, keys + values, processor=default_process, score_cutoff=80.0) | |
key = "" | |
if e1: | |
e = e1[0] | |
if e in set(keys): key = e | |
elif e in set(values): key = keys[values.index(e)] | |
if key: | |
path = to_lora_path(key) | |
new_path = to_lora_path(query) | |
if not Path(path).exists(): | |
if not Path(new_path).exists(): download_private_file_from_somewhere(path, True) | |
if Path(path).exists() and copy_lora(path, new_path): return new_path | |
print(f"Finding <lora:{query}:...> on Civitai...") | |
civitai_query = Path(query).stem if Path(query).is_file() else query | |
civitai_query = civitai_query.replace("_", " ").replace("-", " ") | |
base_model = ["Pony", "SDXL 1.0"] | |
items = search_lora_on_civitai(civitai_query, base_model, 1) | |
if items: | |
item = items[0] | |
path = download_lora(item['dl_url']) | |
new_path = query if Path(query).is_file() else to_lora_path(query) | |
if path and copy_lora(path, new_path): return new_path | |
return None | |
def change_interface_mode(mode: str): | |
if mode == "Fast": | |
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ | |
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\ | |
gr.update(visible=True), gr.update(value="Fast") | |
elif mode == "Simple": # t2i mode | |
return gr.update(open=True), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ | |
gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(open=True),\ | |
gr.update(visible=False), gr.update(value="Standard") | |
elif mode == "LoRA": # t2i LoRA mode | |
return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\ | |
gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(open=False),\ | |
gr.update(visible=False), gr.update(value="Standard") | |
else: # Standard | |
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ | |
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\ | |
gr.update(visible=True), gr.update(value="Standard") | |
quality_prompt_list = [ | |
{ | |
"name": "None", | |
"prompt": "", | |
"negative_prompt": "lowres", | |
}, | |
{ | |
"name": "Animagine Common", | |
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres", | |
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", | |
}, | |
{ | |
"name": "Pony Anime Common", | |
"prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres", | |
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends", | |
}, | |
{ | |
"name": "Pony Common", | |
"prompt": "source_anime, score_9, score_8_up, score_7_up", | |
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends", | |
}, | |
{ | |
"name": "Animagine Standard v3.0", | |
"prompt": "masterpiece, best quality", | |
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name", | |
}, | |
{ | |
"name": "Animagine Standard v3.1", | |
"prompt": "masterpiece, best quality, very aesthetic, absurdres", | |
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", | |
}, | |
{ | |
"name": "Animagine Light v3.1", | |
"prompt": "(masterpiece), best quality, very aesthetic, perfect face", | |
"negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn", | |
}, | |
{ | |
"name": "Animagine Heavy v3.1", | |
"prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details", | |
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing", | |
}, | |
] | |
style_list = [ | |
{ | |
"name": "None", | |
"prompt": "", | |
"negative_prompt": "", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "Photographic", | |
"prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "Manga", | |
"prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", | |
}, | |
{ | |
"name": "Digital Art", | |
"prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed", | |
"negative_prompt": "photo, photorealistic, realism, ugly", | |
}, | |
{ | |
"name": "Pixel art", | |
"prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics", | |
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
] | |
optimization_list = { | |
"None": [28, 7., 'Euler a', False, 'None', 1.], | |
"Default": [28, 7., 'Euler a', False, 'None', 1.], | |
"SPO": [28, 7., 'Euler a', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.], | |
"DPO": [28, 7., 'Euler a', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.], | |
"DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.], | |
"SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.], | |
"Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.], | |
"Hyper-SDXL 8step": [8, 5., 'TCD', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 1.], | |
"Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.], | |
"Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.], | |
"Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.], | |
"PCM 16step": [16, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.], | |
"PCM 8step": [8, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.], | |
"PCM 4step": [4, 2., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.], | |
"PCM 2step": [2, 1., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.], | |
} | |
def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_gui, lora_scale_gui): | |
if not opt in list(optimization_list.keys()): opt = "None" | |
def_steps_gui = 28 | |
def_cfg_gui = 7. | |
steps = optimization_list.get(opt, "None")[0] | |
cfg = optimization_list.get(opt, "None")[1] | |
sampler = optimization_list.get(opt, "None")[2] | |
clip_skip = optimization_list.get(opt, "None")[3] | |
lora = optimization_list.get(opt, "None")[4] | |
lora_scale = optimization_list.get(opt, "None")[5] | |
if opt == "None": | |
steps = max(steps_gui, def_steps_gui) | |
cfg = max(cfg_gui, def_cfg_gui) | |
clip_skip = clip_skip_gui | |
elif opt == "SPO" or opt == "DPO": | |
steps = max(steps_gui, def_steps_gui) | |
cfg = max(cfg_gui, def_cfg_gui) | |
return gr.update(value=steps), gr.update(value=cfg), gr.update(value=sampler),\ | |
gr.update(value=clip_skip), gr.update(value=lora), gr.update(value=lora_scale), | |
# [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui] | |
preset_sampler_setting = { | |
"None": ["Euler a", 28, 7., True, 1024, 1024, "None"], | |
"Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"], | |
"Anime 3:4 Standard": ["Euler a", 28, 7., True, 896, 1152, "None"], | |
"Anime 3:4 Heavy": ["Euler a", 40, 7., True, 896, 1152, "None"], | |
"Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"], | |
"Anime 1:1 Standard": ["Euler a", 28, 7., True, 1024, 1024, "None"], | |
"Anime 1:1 Heavy": ["Euler a", 40, 7., True, 1024, 1024, "None"], | |
"Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"], | |
"Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"], | |
"Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"], | |
"Photo 1:1 Fast": ["LCM", 8, 2.5, False, 1024, 1024, "DPO Turbo"], | |
"Photo 1:1 Standard": ["DPM++ 2M Karras", 28, 7., False, 1024, 1024, "None"], | |
"Photo 1:1 Heavy": ["DPM++ 2M Karras", 40, 7., False, 1024, 1024, "None"], | |
} | |
def set_sampler_settings(sampler_setting): | |
if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None": | |
return gr.update(value="Euler a"), gr.update(value=28), gr.update(value=7.), gr.update(value=True),\ | |
gr.update(value=1024), gr.update(value=1024), gr.update(value="None") | |
v = preset_sampler_setting.get(sampler_setting, ["Euler a", 28, 7., True, 1024, 1024]) | |
# sampler, steps, cfg, clip_skip, width, height, optimization | |
return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\ | |
gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6]) | |
preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list} | |
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"): | |
def to_list(s): | |
return [x.strip() for x in s.split(",") if not s == ""] | |
def list_sub(a, b): | |
return [e for e in a if e not in b] | |
def list_uniq(l): | |
return sorted(set(l), key=l.index) | |
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres") | |
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]") | |
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres") | |
pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends") | |
prompts = to_list(prompt) | |
neg_prompts = to_list(neg_prompt) | |
all_styles_ps = [] | |
all_styles_nps = [] | |
for d in style_list: | |
all_styles_ps.extend(to_list(str(d.get("prompt", "")))) | |
all_styles_nps.extend(to_list(str(d.get("negative_prompt", "")))) | |
all_quality_ps = [] | |
all_quality_nps = [] | |
for d in quality_prompt_list: | |
all_quality_ps.extend(to_list(str(d.get("prompt", "")))) | |
all_quality_nps.extend(to_list(str(d.get("negative_prompt", "")))) | |
quality_ps = to_list(preset_quality[quality_key][0]) | |
quality_nps = to_list(preset_quality[quality_key][1]) | |
styles_ps = to_list(preset_styles[styles_key][0]) | |
styles_nps = to_list(preset_styles[styles_key][1]) | |
prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps) | |
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps) | |
last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else [] | |
last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else [] | |
if type == "Animagine": | |
prompts = prompts + animagine_ps | |
neg_prompts = neg_prompts + animagine_nps | |
elif type == "Pony": | |
prompts = prompts + pony_ps | |
neg_prompts = neg_prompts + pony_nps | |
prompts = prompts + styles_ps + quality_ps | |
neg_prompts = neg_prompts + styles_nps + quality_nps | |
prompt = ", ".join(list_uniq(prompts) + last_empty_p) | |
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np) | |
return gr.update(value=prompt), gr.update(value=neg_prompt), gr.update(value=type) | |
def set_quick_presets(genre:str = "None", type:str = "Auto", speed:str = "None", aspect:str = "None"): | |
quality = "None" | |
style = "None" | |
sampler = "None" | |
opt = "None" | |
if genre == "Anime": | |
if type != "None" and type != "Auto": style = "Anime" | |
if aspect == "1:1": | |
if speed == "Heavy": | |
sampler = "Anime 1:1 Heavy" | |
elif speed == "Fast": | |
sampler = "Anime 1:1 Fast" | |
else: | |
sampler = "Anime 1:1 Standard" | |
elif aspect == "3:4": | |
if speed == "Heavy": | |
sampler = "Anime 3:4 Heavy" | |
elif speed == "Fast": | |
sampler = "Anime 3:4 Fast" | |
else: | |
sampler = "Anime 3:4 Standard" | |
if type == "Pony": | |
quality = "Pony Anime Common" | |
elif type == "Animagine": | |
quality = "Animagine Common" | |
else: | |
quality = "None" | |
elif genre == "Photo": | |
if type != "None" and type != "Auto": style = "Photographic" | |
if aspect == "1:1": | |
if speed == "Heavy": | |
sampler = "Photo 1:1 Heavy" | |
elif speed == "Fast": | |
sampler = "Photo 1:1 Fast" | |
else: | |
sampler = "Photo 1:1 Standard" | |
elif aspect == "3:4": | |
if speed == "Heavy": | |
sampler = "Photo 3:4 Heavy" | |
elif speed == "Fast": | |
sampler = "Photo 3:4 Fast" | |
else: | |
sampler = "Photo 3:4 Standard" | |
if type == "Pony": | |
quality = "Pony Common" | |
else: | |
quality = "None" | |
if speed == "Fast": | |
opt = "DPO Turbo" | |
if genre == "Anime" and type != "Pony" and type != "Auto": quality = "Animagine Light v3.1" | |
return gr.update(value=quality), gr.update(value=style), gr.update(value=sampler), gr.update(value=opt), gr.update(value=type) | |
textual_inversion_dict = {} | |
try: | |
with open('textual_inversion_dict.json', encoding='utf-8') as f: | |
textual_inversion_dict = json.load(f) | |
except Exception: | |
pass | |
textual_inversion_file_token_list = [] | |
def get_tupled_embed_list(embed_list): | |
global textual_inversion_file_list | |
tupled_list = [] | |
for file in embed_list: | |
token = textual_inversion_dict.get(Path(file).name, [Path(file).stem.replace(",",""), False])[0] | |
tupled_list.append((token, file)) | |
textual_inversion_file_token_list.append(token) | |
return tupled_list | |
def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui): | |
ti_tags = list(textual_inversion_dict.values()) + textual_inversion_file_token_list | |
tags = prompt_gui.split(",") if prompt_gui else [] | |
prompts = [] | |
for tag in tags: | |
tag = str(tag).strip() | |
if tag and not tag in ti_tags: | |
prompts.append(tag) | |
ntags = neg_prompt_gui.split(",") if neg_prompt_gui else [] | |
neg_prompts = [] | |
for tag in ntags: | |
tag = str(tag).strip() | |
if tag and not tag in ti_tags: | |
neg_prompts.append(tag) | |
ti_prompts = [] | |
ti_neg_prompts = [] | |
for ti in textual_inversion_gui: | |
tokens = textual_inversion_dict.get(Path(ti).name, [Path(ti).stem.replace(",",""), False]) | |
is_positive = tokens[1] == True or "positive" in Path(ti).parent.name | |
if is_positive: # positive prompt | |
ti_prompts.append(tokens[0]) | |
else: # negative prompt (default) | |
ti_neg_prompts.append(tokens[0]) | |
empty = [""] | |
prompt = ", ".join(prompts + ti_prompts + empty) | |
neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty) | |
return gr.update(value=prompt), gr.update(value=neg_prompt), | |
def get_model_pipeline(repo_id: str): | |
from huggingface_hub import HfApi | |
api = HfApi() | |
default = "StableDiffusionPipeline" | |
try: | |
if " " in repo_id or not api.repo_exists(repo_id): return default | |
model = api.model_info(repo_id=repo_id) | |
except Exception as e: | |
return default | |
if model.private or model.gated: return default | |
tags = model.tags | |
if not 'diffusers' in tags: return default | |
if 'diffusers:FluxPipeline' in tags: | |
return "FluxPipeline" | |
if 'diffusers:StableDiffusionXLPipeline' in tags: | |
return "StableDiffusionXLPipeline" | |
elif 'diffusers:StableDiffusionPipeline' in tags: | |
return "StableDiffusionPipeline" | |
else: | |
return default | |