Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files
app.py
CHANGED
@@ -20,10 +20,10 @@ from mod import (clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists
|
|
20 |
description_ui, compose_lora_json, is_valid_lora, fuse_loras, save_image, preprocess_i2i_image,
|
21 |
get_trigger_word, enhance_prompt, set_control_union_image,
|
22 |
get_control_union_mode, set_control_union_mode, get_control_params, translate_to_en)
|
23 |
-
from
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
|
28 |
from tagger.fl2flux import predict_tags_fl2_flux
|
29 |
|
@@ -674,7 +674,8 @@ css = '''
|
|
674 |
#custom_lora_btn{margin-top: auto;margin-bottom: 11px}
|
675 |
#random_btn{font-size: 300%}
|
676 |
#component-11{align-self: stretch;}
|
677 |
-
.info {text-align:center;
|
|
|
678 |
'''
|
679 |
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
|
680 |
with gr.Tab("FLUX LoRA the Explorer"):
|
@@ -730,14 +731,8 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
730 |
with gr.Row():
|
731 |
with gr.Column():
|
732 |
selected_info = gr.Markdown("")
|
733 |
-
gallery = gr.Gallery(
|
734 |
-
|
735 |
-
label="LoRA Gallery",
|
736 |
-
allow_preview=False,
|
737 |
-
columns=5,
|
738 |
-
elem_id="gallery",
|
739 |
-
show_share_button=False
|
740 |
-
)
|
741 |
with gr.Group():
|
742 |
with gr.Row(elem_id="custom_lora_structure"):
|
743 |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150)
|
@@ -802,15 +797,18 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
802 |
with gr.Accordion("From URL", open=True, visible=True):
|
803 |
with gr.Row():
|
804 |
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Flux.1 D", "Flux.1 S"], value=["Flux.1 D"])
|
805 |
-
lora_search_civitai_sort = gr.Radio(label="Sort", choices=
|
806 |
-
lora_search_civitai_period = gr.Radio(label="Period", choices=
|
807 |
with gr.Row():
|
808 |
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="flux", lines=1)
|
809 |
-
lora_search_civitai_tag = gr.
|
810 |
-
|
|
|
811 |
with gr.Row():
|
812 |
lora_search_civitai_json = gr.JSON(value={}, visible=False)
|
813 |
-
lora_search_civitai_desc = gr.Markdown(value="", visible=False)
|
|
|
|
|
814 |
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
815 |
lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
|
816 |
with gr.Row():
|
@@ -901,22 +899,24 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
901 |
prompt_enhance.click(enhance_prompt, [prompt], [prompt], queue=False, show_api=False)
|
902 |
|
903 |
gr.on(
|
904 |
-
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit
|
905 |
fn=search_civitai_lora,
|
906 |
-
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period,
|
907 |
-
|
|
|
908 |
scroll_to_output=True,
|
909 |
queue=True,
|
910 |
show_api=False,
|
911 |
)
|
912 |
lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
|
913 |
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
|
|
|
914 |
|
915 |
for i, l in enumerate(lora_repo):
|
916 |
deselect_lora_button.click(lambda: ("", 1.0), None, [lora_repo[i], lora_wt[i]], queue=False, show_api=False)
|
917 |
gr.on(
|
918 |
triggers=[lora_download[i].click],
|
919 |
-
fn=
|
920 |
inputs=[lora_download_url, lora_repo[i]],
|
921 |
outputs=[lora_repo[i]],
|
922 |
scroll_to_output=True,
|
@@ -925,14 +925,14 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
925 |
)
|
926 |
gr.on(
|
927 |
triggers=[lora_repo[i].change, lora_wt[i].change],
|
928 |
-
fn=
|
929 |
inputs=[prompt, lora_repo[i], lora_wt[i]],
|
930 |
outputs=[prompt, lora_repo[i], lora_wt[i], lora_info[i], lora_md[i]],
|
931 |
queue=False,
|
932 |
trigger_mode="once",
|
933 |
show_api=False,
|
934 |
).success(get_repo_safetensors, [lora_repo[i]], [lora_weights[i]], queue=False, show_api=False
|
935 |
-
).success(
|
936 |
).success(compose_lora_json, [lora_repo_json, lora_num[i], lora_repo[i], lora_wt[i], lora_weights[i], lora_trigger[i]], [lora_repo_json], queue=False, show_api=False)
|
937 |
|
938 |
for i, m in enumerate(cn_mode):
|
|
|
20 |
description_ui, compose_lora_json, is_valid_lora, fuse_loras, save_image, preprocess_i2i_image,
|
21 |
get_trigger_word, enhance_prompt, set_control_union_image,
|
22 |
get_control_union_mode, set_control_union_mode, get_control_params, translate_to_en)
|
23 |
+
from modutils import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
|
24 |
+
download_my_lora_flux, get_all_lora_tupled_list, apply_lora_prompt_flux,
|
25 |
+
update_loras_flux, update_civitai_selection, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD,
|
26 |
+
get_t2i_model_info, download_hf_file)
|
27 |
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
|
28 |
from tagger.fl2flux import predict_tags_fl2_flux
|
29 |
|
|
|
674 |
#custom_lora_btn{margin-top: auto;margin-bottom: 11px}
|
675 |
#random_btn{font-size: 300%}
|
676 |
#component-11{align-self: stretch;}
|
677 |
+
.info { align-items: center; text-align: center; }
|
678 |
+
.desc [src$='#float'] { float: right; margin: 20px; }
|
679 |
'''
|
680 |
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
|
681 |
with gr.Tab("FLUX LoRA the Explorer"):
|
|
|
731 |
with gr.Row():
|
732 |
with gr.Column():
|
733 |
selected_info = gr.Markdown("")
|
734 |
+
gallery = gr.Gallery([(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False,
|
735 |
+
columns=5, elem_id="gallery", show_share_button=False, interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
736 |
with gr.Group():
|
737 |
with gr.Row(elem_id="custom_lora_structure"):
|
738 |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150)
|
|
|
797 |
with gr.Accordion("From URL", open=True, visible=True):
|
798 |
with gr.Row():
|
799 |
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Flux.1 D", "Flux.1 S"], value=["Flux.1 D"])
|
800 |
+
lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Most Downloaded")
|
801 |
+
lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="Month")
|
802 |
with gr.Row():
|
803 |
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="flux", lines=1)
|
804 |
+
lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True)
|
805 |
+
lora_search_civitai_user = gr.Textbox(label="Username", lines=1)
|
806 |
+
lora_search_civitai_submit = gr.Button("Search on Civitai")
|
807 |
with gr.Row():
|
808 |
lora_search_civitai_json = gr.JSON(value={}, visible=False)
|
809 |
+
lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc")
|
810 |
+
with gr.Accordion("Select from Gallery", open=False):
|
811 |
+
lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
|
812 |
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
813 |
lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
|
814 |
with gr.Row():
|
|
|
899 |
prompt_enhance.click(enhance_prompt, [prompt], [prompt], queue=False, show_api=False)
|
900 |
|
901 |
gr.on(
|
902 |
+
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
|
903 |
fn=search_civitai_lora,
|
904 |
+
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period,
|
905 |
+
lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery],
|
906 |
+
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery],
|
907 |
scroll_to_output=True,
|
908 |
queue=True,
|
909 |
show_api=False,
|
910 |
)
|
911 |
lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
|
912 |
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
|
913 |
+
lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)
|
914 |
|
915 |
for i, l in enumerate(lora_repo):
|
916 |
deselect_lora_button.click(lambda: ("", 1.0), None, [lora_repo[i], lora_wt[i]], queue=False, show_api=False)
|
917 |
gr.on(
|
918 |
triggers=[lora_download[i].click],
|
919 |
+
fn=download_my_lora_flux,
|
920 |
inputs=[lora_download_url, lora_repo[i]],
|
921 |
outputs=[lora_repo[i]],
|
922 |
scroll_to_output=True,
|
|
|
925 |
)
|
926 |
gr.on(
|
927 |
triggers=[lora_repo[i].change, lora_wt[i].change],
|
928 |
+
fn=update_loras_flux,
|
929 |
inputs=[prompt, lora_repo[i], lora_wt[i]],
|
930 |
outputs=[prompt, lora_repo[i], lora_wt[i], lora_info[i], lora_md[i]],
|
931 |
queue=False,
|
932 |
trigger_mode="once",
|
933 |
show_api=False,
|
934 |
).success(get_repo_safetensors, [lora_repo[i]], [lora_weights[i]], queue=False, show_api=False
|
935 |
+
).success(apply_lora_prompt_flux, [lora_info[i]], [lora_trigger[i]], queue=False, show_api=False
|
936 |
).success(compose_lora_json, [lora_repo_json, lora_num[i], lora_repo[i], lora_wt[i], lora_weights[i], lora_trigger[i]], [lora_repo_json], queue=False, show_api=False)
|
937 |
|
938 |
for i, m in enumerate(cn_mode):
|
mod.py
CHANGED
@@ -5,7 +5,8 @@ from PIL import Image
|
|
5 |
from pathlib import Path
|
6 |
import gc
|
7 |
import subprocess
|
8 |
-
from env import num_cns, model_trigger, HF_TOKEN
|
|
|
9 |
import os
|
10 |
|
11 |
|
@@ -18,6 +19,12 @@ control_images = [None] * num_cns
|
|
18 |
control_modes = [-1] * num_cns
|
19 |
control_scales = [0] * num_cns
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def is_repo_name(s):
|
23 |
import re
|
|
|
5 |
from pathlib import Path
|
6 |
import gc
|
7 |
import subprocess
|
8 |
+
from env import num_cns, model_trigger, HF_TOKEN, CIVITAI_API_KEY, download_lora_list, directory_loras
|
9 |
+
from modutils import download_things
|
10 |
import os
|
11 |
|
12 |
|
|
|
19 |
control_modes = [-1] * num_cns
|
20 |
control_scales = [0] * num_cns
|
21 |
|
22 |
+
# Download stuffs
|
23 |
+
download_lora = ", ".join(download_lora_list)
|
24 |
+
for url in [url.strip() for url in download_lora.split(',')]:
|
25 |
+
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
26 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
27 |
+
|
28 |
|
29 |
def is_repo_name(s):
|
30 |
import re
|
modutils.py
CHANGED
@@ -2,11 +2,16 @@ import spaces
|
|
2 |
import json
|
3 |
import gradio as gr
|
4 |
import os
|
|
|
5 |
from pathlib import Path
|
6 |
from PIL import Image
|
7 |
-
|
|
|
|
|
|
|
8 |
import urllib.parse
|
9 |
-
import
|
|
|
10 |
|
11 |
|
12 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
@@ -38,7 +43,6 @@ def list_sub(a, b):
|
|
38 |
|
39 |
|
40 |
def is_repo_name(s):
|
41 |
-
import re
|
42 |
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
43 |
|
44 |
|
@@ -226,7 +230,6 @@ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
|
|
226 |
|
227 |
|
228 |
def download_private_repo(repo_id, dir_path, is_replace):
|
229 |
-
from huggingface_hub import snapshot_download
|
230 |
if not hf_read_token: return
|
231 |
try:
|
232 |
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
|
@@ -265,7 +268,6 @@ def get_private_model_list(repo_id, dir_path):
|
|
265 |
|
266 |
|
267 |
def download_private_file(repo_id, path, is_replace):
|
268 |
-
from huggingface_hub import hf_hub_download
|
269 |
file = Path(path)
|
270 |
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
|
271 |
if not hf_read_token or newpath.exists(): return
|
@@ -389,7 +391,9 @@ except Exception as e:
|
|
389 |
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
|
390 |
civitai_not_exists_list = []
|
391 |
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
|
392 |
-
|
|
|
|
|
393 |
all_lora_list = []
|
394 |
|
395 |
|
@@ -413,9 +417,6 @@ private_lora_model_list = get_private_lora_model_lists()
|
|
413 |
|
414 |
def get_civitai_info(path):
|
415 |
global civitai_not_exists_list
|
416 |
-
import requests
|
417 |
-
from urllib3.util import Retry
|
418 |
-
from requests.adapters import HTTPAdapter
|
419 |
if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
|
420 |
if not Path(path).exists(): return None
|
421 |
user_agent = get_user_agent()
|
@@ -450,7 +451,7 @@ def get_civitai_info(path):
|
|
450 |
|
451 |
|
452 |
def get_lora_model_list():
|
453 |
-
loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras)
|
454 |
loras.insert(0, "None")
|
455 |
loras.insert(0, "")
|
456 |
return loras
|
@@ -525,7 +526,6 @@ def download_lora(dl_urls: str):
|
|
525 |
|
526 |
|
527 |
def copy_lora(path: str, new_path: str):
|
528 |
-
import shutil
|
529 |
if path == new_path: return new_path
|
530 |
cpath = Path(path)
|
531 |
npath = Path(new_path)
|
@@ -589,7 +589,6 @@ def get_valid_lora_path(query: str):
|
|
589 |
|
590 |
|
591 |
def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
|
592 |
-
import re
|
593 |
wt = lora_wt
|
594 |
result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
|
595 |
if not result: return wt
|
@@ -598,7 +597,6 @@ def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
|
|
598 |
|
599 |
|
600 |
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
601 |
-
import re
|
602 |
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
603 |
lora1 = get_valid_lora_name(lora1, model_name)
|
604 |
lora2 = get_valid_lora_name(lora2, model_name)
|
@@ -718,7 +716,6 @@ def apply_lora_prompt(prompt: str = "", lora_info: str = ""):
|
|
718 |
|
719 |
|
720 |
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
721 |
-
import re
|
722 |
on1, label1, tag1, md1 = get_lora_info(lora1)
|
723 |
on2, label2, tag2, md2 = get_lora_info(lora2)
|
724 |
on3, label3, tag3, md3 = get_lora_info(lora3)
|
@@ -765,7 +762,6 @@ def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3,
|
|
765 |
|
766 |
|
767 |
def get_my_lora(link_url):
|
768 |
-
from pathlib import Path
|
769 |
before = get_local_model_list(directory_loras)
|
770 |
for url in [url.strip() for url in link_url.split(',')]:
|
771 |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
@@ -802,7 +798,6 @@ def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)):
|
|
802 |
|
803 |
|
804 |
def move_file_lora(filepaths):
|
805 |
-
import shutil
|
806 |
for file in filepaths:
|
807 |
path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve()))
|
808 |
newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
@@ -825,11 +820,13 @@ def move_file_lora(filepaths):
|
|
825 |
)
|
826 |
|
827 |
|
|
|
|
|
|
|
|
|
|
|
828 |
def get_civitai_info(path):
|
829 |
global civitai_not_exists_list, loras_url_to_path_dict
|
830 |
-
import requests
|
831 |
-
from requests.adapters import HTTPAdapter
|
832 |
-
from urllib3.util import Retry
|
833 |
default = ["", "", "", "", ""]
|
834 |
if path in set(civitai_not_exists_list): return default
|
835 |
if not Path(path).exists(): return None
|
@@ -867,16 +864,14 @@ def get_civitai_info(path):
|
|
867 |
|
868 |
|
869 |
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
|
870 |
-
sort: str = "Highest Rated", period: str = "AllTime", tag: str = ""):
|
871 |
-
import requests
|
872 |
-
from requests.adapters import HTTPAdapter
|
873 |
-
from urllib3.util import Retry
|
874 |
user_agent = get_user_agent()
|
875 |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
876 |
base_url = 'https://civitai.com/api/v1/models'
|
877 |
-
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'nsfw': 'true'}
|
878 |
if query: params["query"] = query
|
879 |
if tag: params["tag"] = tag
|
|
|
880 |
session = requests.Session()
|
881 |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
882 |
session.mount("https://", HTTPAdapter(max_retries=retries))
|
@@ -893,46 +888,129 @@ def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1
|
|
893 |
for j in json['items']:
|
894 |
for model in j['modelVersions']:
|
895 |
item = {}
|
896 |
-
if model['baseModel'] not in set(allow_model): continue
|
897 |
item['name'] = j['name']
|
898 |
-
item['creator'] = j['creator']['username']
|
899 |
-
item['tags'] = j['tags']
|
900 |
-
item['model_name'] = model['name']
|
901 |
-
item['base_model'] = model['baseModel']
|
|
|
902 |
item['dl_url'] = model['downloadUrl']
|
903 |
-
item['md'] =
|
|
|
|
|
|
|
|
|
|
|
|
|
904 |
items.append(item)
|
905 |
return items
|
906 |
|
907 |
|
908 |
-
def search_civitai_lora(query, base_model, sort=
|
909 |
-
global
|
910 |
-
|
|
|
|
|
|
|
911 |
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
|
912 |
-
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
|
913 |
-
|
914 |
choices = []
|
|
|
915 |
for item in items:
|
916 |
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
|
917 |
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
|
918 |
value = item['dl_url']
|
919 |
choices.append((name, value))
|
920 |
-
|
|
|
921 |
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
|
922 |
-
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
|
923 |
-
|
|
|
|
|
924 |
md = result['md'] if result else ""
|
925 |
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
|
926 |
-
gr.update(visible=True), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
927 |
|
928 |
|
929 |
def select_civitai_lora(search_result):
|
930 |
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
|
931 |
-
result =
|
932 |
md = result['md'] if result else ""
|
933 |
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
934 |
|
935 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
936 |
LORA_BASE_MODEL_DICT = {
|
937 |
"diffusers:StableDiffusionPipeline": ["SD 1.5"],
|
938 |
"diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
|
@@ -1177,15 +1255,6 @@ preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in qualit
|
|
1177 |
|
1178 |
|
1179 |
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"):
|
1180 |
-
def to_list(s):
|
1181 |
-
return [x.strip() for x in s.split(",") if not s == ""]
|
1182 |
-
|
1183 |
-
def list_sub(a, b):
|
1184 |
-
return [e for e in a if e not in b]
|
1185 |
-
|
1186 |
-
def list_uniq(l):
|
1187 |
-
return sorted(set(l), key=l.index)
|
1188 |
-
|
1189 |
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
|
1190 |
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
|
1191 |
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
|
@@ -1337,7 +1406,6 @@ def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_g
|
|
1337 |
|
1338 |
|
1339 |
def get_model_pipeline(repo_id: str):
|
1340 |
-
from huggingface_hub import HfApi
|
1341 |
api = HfApi(token=HF_TOKEN)
|
1342 |
default = "StableDiffusionPipeline"
|
1343 |
try:
|
|
|
2 |
import json
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
+
import re
|
6 |
from pathlib import Path
|
7 |
from PIL import Image
|
8 |
+
import shutil
|
9 |
+
import requests
|
10 |
+
from requests.adapters import HTTPAdapter
|
11 |
+
from urllib3.util import Retry
|
12 |
import urllib.parse
|
13 |
+
import pandas as pd
|
14 |
+
from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download
|
15 |
|
16 |
|
17 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
|
|
43 |
|
44 |
|
45 |
def is_repo_name(s):
|
|
|
46 |
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
47 |
|
48 |
|
|
|
230 |
|
231 |
|
232 |
def download_private_repo(repo_id, dir_path, is_replace):
|
|
|
233 |
if not hf_read_token: return
|
234 |
try:
|
235 |
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
|
|
|
268 |
|
269 |
|
270 |
def download_private_file(repo_id, path, is_replace):
|
|
|
271 |
file = Path(path)
|
272 |
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
|
273 |
if not hf_read_token or newpath.exists(): return
|
|
|
391 |
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
|
392 |
civitai_not_exists_list = []
|
393 |
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
|
394 |
+
civitai_last_results = {} # {"URL to download": {search results}, ...}
|
395 |
+
civitai_last_choices = [("", "")]
|
396 |
+
civitai_last_gallery = []
|
397 |
all_lora_list = []
|
398 |
|
399 |
|
|
|
417 |
|
418 |
def get_civitai_info(path):
|
419 |
global civitai_not_exists_list
|
|
|
|
|
|
|
420 |
if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
|
421 |
if not Path(path).exists(): return None
|
422 |
user_agent = get_user_agent()
|
|
|
451 |
|
452 |
|
453 |
def get_lora_model_list():
|
454 |
+
loras = list_uniq(get_private_lora_model_lists() + DIFFUSERS_FORMAT_LORAS + get_local_model_list(directory_loras))
|
455 |
loras.insert(0, "None")
|
456 |
loras.insert(0, "")
|
457 |
return loras
|
|
|
526 |
|
527 |
|
528 |
def copy_lora(path: str, new_path: str):
|
|
|
529 |
if path == new_path: return new_path
|
530 |
cpath = Path(path)
|
531 |
npath = Path(new_path)
|
|
|
589 |
|
590 |
|
591 |
def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
|
|
|
592 |
wt = lora_wt
|
593 |
result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
|
594 |
if not result: return wt
|
|
|
597 |
|
598 |
|
599 |
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
|
|
600 |
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
601 |
lora1 = get_valid_lora_name(lora1, model_name)
|
602 |
lora2 = get_valid_lora_name(lora2, model_name)
|
|
|
716 |
|
717 |
|
718 |
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
|
|
719 |
on1, label1, tag1, md1 = get_lora_info(lora1)
|
720 |
on2, label2, tag2, md2 = get_lora_info(lora2)
|
721 |
on3, label3, tag3, md3 = get_lora_info(lora3)
|
|
|
762 |
|
763 |
|
764 |
def get_my_lora(link_url):
|
|
|
765 |
before = get_local_model_list(directory_loras)
|
766 |
for url in [url.strip() for url in link_url.split(',')]:
|
767 |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
|
|
798 |
|
799 |
|
800 |
def move_file_lora(filepaths):
|
|
|
801 |
for file in filepaths:
|
802 |
path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve()))
|
803 |
newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
|
|
820 |
)
|
821 |
|
822 |
|
823 |
+
CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"]
|
824 |
+
CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"]
|
825 |
+
CIVITAI_BASEMODEL = ["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"]
|
826 |
+
|
827 |
+
|
828 |
def get_civitai_info(path):
|
829 |
global civitai_not_exists_list, loras_url_to_path_dict
|
|
|
|
|
|
|
830 |
default = ["", "", "", "", ""]
|
831 |
if path in set(civitai_not_exists_list): return default
|
832 |
if not Path(path).exists(): return None
|
|
|
864 |
|
865 |
|
866 |
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
|
867 |
+
sort: str = "Highest Rated", period: str = "AllTime", tag: str = "", user: str = "", page: int = 1):
|
|
|
|
|
|
|
868 |
user_agent = get_user_agent()
|
869 |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
870 |
base_url = 'https://civitai.com/api/v1/models'
|
871 |
+
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'page': int(page), 'nsfw': 'true'}
|
872 |
if query: params["query"] = query
|
873 |
if tag: params["tag"] = tag
|
874 |
+
if user: params["username"] = user
|
875 |
session = requests.Session()
|
876 |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
877 |
session.mount("https://", HTTPAdapter(max_retries=retries))
|
|
|
888 |
for j in json['items']:
|
889 |
for model in j['modelVersions']:
|
890 |
item = {}
|
891 |
+
if len(allow_model) != 0 and model['baseModel'] not in set(allow_model): continue
|
892 |
item['name'] = j['name']
|
893 |
+
item['creator'] = j['creator']['username'] if 'creator' in j.keys() and 'username' in j['creator'].keys() else ""
|
894 |
+
item['tags'] = j['tags'] if 'tags' in j.keys() else []
|
895 |
+
item['model_name'] = model['name'] if 'name' in model.keys() else ""
|
896 |
+
item['base_model'] = model['baseModel'] if 'baseModel' in model.keys() else ""
|
897 |
+
item['description'] = model['description'] if 'description' in model.keys() else ""
|
898 |
item['dl_url'] = model['downloadUrl']
|
899 |
+
item['md'] = ""
|
900 |
+
if 'images' in model.keys() and len(model["images"]) != 0:
|
901 |
+
item['img_url'] = model["images"][0]["url"]
|
902 |
+
item['md'] += f'<img src="{model["images"][0]["url"]}#float" alt="thumbnail" width="150" height="240"><br>'
|
903 |
+
else: item['img_url'] = "/home/user/app/null.png"
|
904 |
+
item['md'] += f'''Model URL: [https://civitai.com/models/{j["id"]}](https://civitai.com/models/{j["id"]})<br>Model Name: {item["name"]}<br>
|
905 |
+
Creator: {item["creator"]}<br>Tags: {", ".join(item["tags"])}<br>Base Model: {item["base_model"]}<br>Description: {item["description"]}'''
|
906 |
items.append(item)
|
907 |
return items
|
908 |
|
909 |
|
910 |
+
def search_civitai_lora(query, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag="", user="", gallery=[]):
|
911 |
+
global civitai_last_results, civitai_last_choices, civitai_last_gallery
|
912 |
+
civitai_last_choices = [("", "")]
|
913 |
+
civitai_last_gallery = []
|
914 |
+
civitai_last_results = {}
|
915 |
+
items = search_lora_on_civitai(query, base_model, 100, sort, period, tag, user)
|
916 |
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
|
917 |
+
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
918 |
+
civitai_last_results = {}
|
919 |
choices = []
|
920 |
+
gallery = []
|
921 |
for item in items:
|
922 |
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
|
923 |
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
|
924 |
value = item['dl_url']
|
925 |
choices.append((name, value))
|
926 |
+
gallery.append((item['img_url'], name))
|
927 |
+
civitai_last_results[value] = item
|
928 |
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
|
929 |
+
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
930 |
+
civitai_last_choices = choices
|
931 |
+
civitai_last_gallery = gallery
|
932 |
+
result = civitai_last_results.get(choices[0][1], "None")
|
933 |
md = result['md'] if result else ""
|
934 |
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
|
935 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(value=gallery)
|
936 |
+
|
937 |
+
|
938 |
+
def update_civitai_selection(evt: gr.SelectData):
|
939 |
+
try:
|
940 |
+
selected_index = evt.index
|
941 |
+
selected = civitai_last_choices[selected_index][1]
|
942 |
+
return gr.update(value=selected)
|
943 |
+
except Exception:
|
944 |
+
return gr.update(visible=True)
|
945 |
|
946 |
|
947 |
def select_civitai_lora(search_result):
|
948 |
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
|
949 |
+
result = civitai_last_results.get(search_result, "None")
|
950 |
md = result['md'] if result else ""
|
951 |
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
952 |
|
953 |
|
954 |
+
def download_my_lora_flux(dl_urls: str, lora):
|
955 |
+
path = download_lora(dl_urls)
|
956 |
+
if path: lora = path
|
957 |
+
choices = get_all_lora_tupled_list()
|
958 |
+
return gr.update(value=lora, choices=choices)
|
959 |
+
|
960 |
+
|
961 |
+
def apply_lora_prompt_flux(lora_info: str):
|
962 |
+
if lora_info == "None": return ""
|
963 |
+
lora_tag = lora_info.replace("/",",")
|
964 |
+
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
|
965 |
+
lora_prompts = normalize_prompt_list(lora_tags)
|
966 |
+
prompt = ", ".join(list_uniq(lora_prompts))
|
967 |
+
return prompt
|
968 |
+
|
969 |
+
|
970 |
+
def update_loras_flux(prompt, lora, lora_wt):
|
971 |
+
on, label, tag, md = get_lora_info(lora)
|
972 |
+
choices = get_all_lora_tupled_list()
|
973 |
+
return gr.update(value=prompt), gr.update(value=lora, choices=choices), gr.update(value=lora_wt),\
|
974 |
+
gr.update(value=tag, label=label, visible=on), gr.update(value=md, visible=on)
|
975 |
+
|
976 |
+
|
977 |
+
def search_civitai_lora_json(query, base_model):
|
978 |
+
results = {}
|
979 |
+
items = search_lora_on_civitai(query, base_model)
|
980 |
+
if not items: return gr.update(value=results)
|
981 |
+
for item in items:
|
982 |
+
results[item['dl_url']] = item
|
983 |
+
return gr.update(value=results)
|
984 |
+
|
985 |
+
|
986 |
+
def get_civitai_tag():
|
987 |
+
default = [""]
|
988 |
+
user_agent = get_user_agent()
|
989 |
+
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
990 |
+
base_url = 'https://civitai.com/api/v1/tags'
|
991 |
+
params = {'limit': 200}
|
992 |
+
session = requests.Session()
|
993 |
+
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
994 |
+
session.mount("https://", HTTPAdapter(max_retries=retries))
|
995 |
+
url = base_url
|
996 |
+
try:
|
997 |
+
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
|
998 |
+
if not r.ok: return default
|
999 |
+
j = dict(r.json()).copy()
|
1000 |
+
if "items" not in j.keys(): return default
|
1001 |
+
items = []
|
1002 |
+
for item in j["items"]:
|
1003 |
+
items.append([str(item.get("name", "")), int(item.get("modelCount", 0))])
|
1004 |
+
df = pd.DataFrame(items)
|
1005 |
+
df.sort_values(1, ascending=False)
|
1006 |
+
tags = df.values.tolist()
|
1007 |
+
tags = [""] + [l[0] for l in tags]
|
1008 |
+
return tags
|
1009 |
+
except Exception as e:
|
1010 |
+
print(e)
|
1011 |
+
return default
|
1012 |
+
|
1013 |
+
|
1014 |
LORA_BASE_MODEL_DICT = {
|
1015 |
"diffusers:StableDiffusionPipeline": ["SD 1.5"],
|
1016 |
"diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
|
|
|
1255 |
|
1256 |
|
1257 |
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1258 |
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
|
1259 |
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
|
1260 |
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
|
|
|
1406 |
|
1407 |
|
1408 |
def get_model_pipeline(repo_id: str):
|
|
|
1409 |
api = HfApi(token=HF_TOKEN)
|
1410 |
default = "StableDiffusionPipeline"
|
1411 |
try:
|
null.png
ADDED