Upload 2 files
Browse files- app.py +7 -1
- convert_url_to_diffusers_sdxl_gr.py +47 -53
app.py
CHANGED
@@ -11,6 +11,10 @@ vaes = [
|
|
11 |
"https://huggingface.co/John6666/safetensors_converting_test/blob/main/xlVAEC_e7.safetensors",
|
12 |
"https://huggingface.co/John6666/safetensors_converting_test/blob/main/xlVAEC_f1.safetensors",
|
13 |
]
|
|
|
|
|
|
|
|
|
14 |
loras = [
|
15 |
"",
|
16 |
"https://huggingface.co/SPO-Diffusion-Models/SPO-SDXL_4k-p_10ep_LoRA/blob/main/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors",
|
@@ -87,11 +91,13 @@ It saves you the trouble of typing them in.<br>
|
|
87 |
with gr.Row():
|
88 |
is_upload_sf = gr.Checkbox(label="Upload single safetensors file into new repo", value=False)
|
89 |
is_private = gr.Checkbox(label="Create private repo", value=True)
|
|
|
90 |
presets = gr.Radio(label="Presets", choices=list(preset_dict.keys()), value="Default")
|
91 |
with gr.Accordion("Advanced settings", open=False):
|
92 |
is_half = gr.Checkbox(label="Half precision", value=True)
|
93 |
with gr.Row():
|
94 |
vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True)
|
|
|
95 |
scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler a")
|
96 |
with gr.Row():
|
97 |
with gr.Column():
|
@@ -117,7 +123,7 @@ It saves you the trouble of typing them in.<br>
|
|
117 |
gr.on(
|
118 |
triggers=[run_button.click],
|
119 |
fn=convert_url_to_diffusers_repo,
|
120 |
-
inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_upload_sf, repo_urls, is_half, vae, scheduler,
|
121 |
lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s],
|
122 |
outputs=[repo_urls, output_md],
|
123 |
)
|
|
|
11 |
"https://huggingface.co/John6666/safetensors_converting_test/blob/main/xlVAEC_e7.safetensors",
|
12 |
"https://huggingface.co/John6666/safetensors_converting_test/blob/main/xlVAEC_f1.safetensors",
|
13 |
]
|
14 |
+
clips = [
|
15 |
+
"",
|
16 |
+
"openai/clip-vit-large-patch14",
|
17 |
+
]
|
18 |
loras = [
|
19 |
"",
|
20 |
"https://huggingface.co/SPO-Diffusion-Models/SPO-SDXL_4k-p_10ep_LoRA/blob/main/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors",
|
|
|
91 |
with gr.Row():
|
92 |
is_upload_sf = gr.Checkbox(label="Upload single safetensors file into new repo", value=False)
|
93 |
is_private = gr.Checkbox(label="Create private repo", value=True)
|
94 |
+
is_overwrite = gr.Checkbox(label="Overwrite repo", value=False)
|
95 |
presets = gr.Radio(label="Presets", choices=list(preset_dict.keys()), value="Default")
|
96 |
with gr.Accordion("Advanced settings", open=False):
|
97 |
is_half = gr.Checkbox(label="Half precision", value=True)
|
98 |
with gr.Row():
|
99 |
vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True)
|
100 |
+
clip = gr.Dropdown(label="CLIP", choices=clips, value=clips[1], allow_custom_value=True)
|
101 |
scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler a")
|
102 |
with gr.Row():
|
103 |
with gr.Column():
|
|
|
123 |
gr.on(
|
124 |
triggers=[run_button.click],
|
125 |
fn=convert_url_to_diffusers_repo,
|
126 |
+
inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_overwrite, is_upload_sf, repo_urls, is_half, vae, clip, scheduler,
|
127 |
lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s],
|
128 |
outputs=[repo_urls, output_md],
|
129 |
)
|
convert_url_to_diffusers_sdxl_gr.py
CHANGED
@@ -3,7 +3,13 @@ from pathlib import Path
|
|
3 |
import os
|
4 |
import torch
|
5 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
|
|
6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
7 |
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
8 |
|
9 |
|
@@ -12,15 +18,12 @@ def list_sub(a, b):
|
|
12 |
|
13 |
|
14 |
def is_repo_name(s):
|
15 |
-
import re
|
16 |
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
17 |
|
18 |
|
19 |
def split_hf_url(url: str):
|
20 |
-
import re
|
21 |
-
import urllib.parse
|
22 |
try:
|
23 |
-
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(
|
24 |
if len(s) < 4: return "", "", "", ""
|
25 |
repo_id = s[1]
|
26 |
repo_type = "dataset" if s[0] == "datasets" else "model"
|
@@ -32,7 +35,6 @@ def split_hf_url(url: str):
|
|
32 |
|
33 |
|
34 |
def download_hf_file(directory, url, hf_token="", progress=gr.Progress(track_tqdm=True)):
|
35 |
-
from huggingface_hub import hf_hub_download
|
36 |
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
37 |
try:
|
38 |
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
@@ -245,7 +247,7 @@ def fuse_loras(pipe, lora_dict={}, temp_dir=".", civitai_key="", hf_token=""):
|
|
245 |
|
246 |
|
247 |
def convert_url_to_diffusers_sdxl(url, civitai_key="", hf_token="", is_upload_sf=False, half=True, vae=None,
|
248 |
-
scheduler="Euler a", lora_dict={}, is_local=True, progress=gr.Progress(track_tqdm=True)):
|
249 |
progress(0, desc="Start converting...")
|
250 |
temp_dir = "."
|
251 |
new_file = get_download_file(temp_dir, url, civitai_key, hf_token)
|
@@ -254,72 +256,63 @@ def convert_url_to_diffusers_sdxl(url, civitai_key="", hf_token="", is_upload_sf
|
|
254 |
return ""
|
255 |
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, torch_dtype=torch.float16)
|
261 |
-
else:
|
262 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True)
|
263 |
-
else:
|
264 |
-
if half:
|
265 |
-
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, torch_dtype=torch.float16)
|
266 |
-
else:
|
267 |
-
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True)
|
268 |
|
269 |
new_vae_file = ""
|
270 |
if vae:
|
271 |
-
if is_repo_name(vae):
|
272 |
-
if half:
|
273 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
|
274 |
-
else:
|
275 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae)
|
276 |
else:
|
277 |
new_vae_file = get_download_file(temp_dir, vae, civitai_key, hf_token)
|
278 |
-
if new_vae_file
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key, hf_token)
|
284 |
|
285 |
sconf = get_scheduler_config(scheduler)
|
286 |
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
287 |
|
288 |
-
|
289 |
-
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
290 |
-
else:
|
291 |
-
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
292 |
|
293 |
-
if Path(new_repo_name).exists():
|
294 |
-
save_readme_md(new_repo_name, url)
|
295 |
|
296 |
-
if not
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
300 |
|
301 |
progress(1, desc="Converted.")
|
302 |
return new_repo_name
|
303 |
|
304 |
|
305 |
def is_repo_exists(repo_id, hf_token):
|
306 |
-
from huggingface_hub import HfApi
|
307 |
api = HfApi(token=hf_token)
|
308 |
try:
|
309 |
if api.repo_exists(repo_id=repo_id): return True
|
310 |
else: return False
|
311 |
except Exception as e:
|
312 |
-
print(e)
|
313 |
-
print(f"Error: Failed to connect {repo_id}.")
|
314 |
return True # for safe
|
315 |
|
316 |
|
317 |
def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, progress=gr.Progress(track_tqdm=True)):
|
318 |
-
from huggingface_hub import HfApi
|
319 |
api = HfApi(token=hf_token)
|
320 |
try:
|
321 |
progress(0, desc="Start uploading...")
|
322 |
-
api.create_repo(repo_id=new_repo_id, token=hf_token, private=is_private)
|
323 |
for path in Path(diffusers_folder).glob("*"):
|
324 |
if path.is_dir():
|
325 |
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
|
@@ -328,39 +321,40 @@ def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, p
|
|
328 |
progress(1, desc="Uploaded.")
|
329 |
url = f"https://huggingface.co/{new_repo_id}"
|
330 |
except Exception as e:
|
331 |
-
print(f"Error: Failed to upload to {new_repo_id}.")
|
332 |
-
print(e)
|
333 |
return ""
|
334 |
return url
|
335 |
|
336 |
|
337 |
-
def convert_url_to_diffusers_repo(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True,
|
338 |
-
|
|
|
339 |
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
|
340 |
-
|
|
|
|
|
341 |
if not hf_user:
|
342 |
print(f"Invalid user name: {hf_user}")
|
343 |
progress(1, desc=f"Invalid user name: {hf_user}")
|
344 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(
|
345 |
-
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY")
|
346 |
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
|
347 |
-
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, hf_token, is_upload_sf, half, vae, scheduler, lora_dict, False)
|
348 |
if not new_path: return ""
|
349 |
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
|
350 |
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
|
351 |
if not is_repo_name(new_repo_id):
|
352 |
print(f"Invalid repo name: {new_repo_id}")
|
353 |
progress(1, desc=f"Invalid repo name: {new_repo_id}")
|
354 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(
|
355 |
-
if is_repo_exists(new_repo_id, hf_token):
|
356 |
print(f"Repo already exists: {new_repo_id}")
|
357 |
progress(1, desc=f"Repo already exists: {new_repo_id}")
|
358 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(
|
359 |
repo_url = create_diffusers_repo(new_repo_id, new_path, is_private, hf_token)
|
360 |
shutil.rmtree(new_path)
|
361 |
if not repo_urls: repo_urls = []
|
362 |
repo_urls.append(repo_url)
|
363 |
-
md = "Your new repo
|
364 |
for u in repo_urls:
|
365 |
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
|
366 |
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
|
|
|
3 |
import os
|
4 |
import torch
|
5 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
6 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
7 |
import gradio as gr
|
8 |
+
from huggingface_hub import hf_hub_download, HfApi
|
9 |
+
import urllib.parse
|
10 |
+
import re
|
11 |
+
import shutil
|
12 |
+
import gc
|
13 |
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
14 |
|
15 |
|
|
|
18 |
|
19 |
|
20 |
def is_repo_name(s):
|
|
|
21 |
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
22 |
|
23 |
|
24 |
def split_hf_url(url: str):
|
|
|
|
|
25 |
try:
|
26 |
+
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
|
27 |
if len(s) < 4: return "", "", "", ""
|
28 |
repo_id = s[1]
|
29 |
repo_type = "dataset" if s[0] == "datasets" else "model"
|
|
|
35 |
|
36 |
|
37 |
def download_hf_file(directory, url, hf_token="", progress=gr.Progress(track_tqdm=True)):
|
|
|
38 |
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
39 |
try:
|
40 |
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
|
|
247 |
|
248 |
|
249 |
def convert_url_to_diffusers_sdxl(url, civitai_key="", hf_token="", is_upload_sf=False, half=True, vae=None,
|
250 |
+
scheduler="Euler a", lora_dict={}, is_local=True, clip="", progress=gr.Progress(track_tqdm=True)):
|
251 |
progress(0, desc="Start converting...")
|
252 |
temp_dir = "."
|
253 |
new_file = get_download_file(temp_dir, url, civitai_key, hf_token)
|
|
|
256 |
return ""
|
257 |
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
258 |
|
259 |
+
type_kwargs = {}
|
260 |
+
kwargs = {}
|
261 |
+
if half: type_kwargs["torch_dtype"] = torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
new_vae_file = ""
|
264 |
if vae:
|
265 |
+
if is_repo_name(vae): my_vae = AutoencoderKL.from_pretrained(vae, **type_kwargs)
|
|
|
|
|
|
|
|
|
266 |
else:
|
267 |
new_vae_file = get_download_file(temp_dir, vae, civitai_key, hf_token)
|
268 |
+
if new_vae_file: my_vae = AutoencoderKL.from_single_file(new_vae_file, **type_kwargs)
|
269 |
+
kwargs["vae"] = my_vae
|
270 |
+
|
271 |
+
if clip:
|
272 |
+
my_tokenizer = CLIPTokenizer.from_pretrained(clip)
|
273 |
+
my_text_encoder = CLIPTextModel.from_pretrained(clip, **type_kwargs)
|
274 |
+
kwargs["tokenizer"] = my_tokenizer
|
275 |
+
kwargs["text_encoder"] = my_text_encoder
|
276 |
+
|
277 |
+
pipe = None
|
278 |
+
if is_repo_name(url): pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
279 |
+
else: pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
280 |
|
281 |
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key, hf_token)
|
282 |
|
283 |
sconf = get_scheduler_config(scheduler)
|
284 |
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
285 |
|
286 |
+
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
|
|
|
|
|
|
287 |
|
288 |
+
if Path(new_repo_name).exists(): save_readme_md(new_repo_name, url)
|
|
|
289 |
|
290 |
+
if not is_local:
|
291 |
+
if not is_repo_name(new_file) and is_upload_sf: shutil.move(str(Path(new_file).resolve()), str(Path(new_repo_name, Path(new_file).name).resolve()))
|
292 |
+
else: os.remove(new_file)
|
293 |
+
del pipe
|
294 |
+
torch.cuda.empty_cache()
|
295 |
+
gc.collect()
|
296 |
|
297 |
progress(1, desc="Converted.")
|
298 |
return new_repo_name
|
299 |
|
300 |
|
301 |
def is_repo_exists(repo_id, hf_token):
|
|
|
302 |
api = HfApi(token=hf_token)
|
303 |
try:
|
304 |
if api.repo_exists(repo_id=repo_id): return True
|
305 |
else: return False
|
306 |
except Exception as e:
|
307 |
+
print(f"Error: Failed to connect {repo_id}. {e}")
|
|
|
308 |
return True # for safe
|
309 |
|
310 |
|
311 |
def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, progress=gr.Progress(track_tqdm=True)):
|
|
|
312 |
api = HfApi(token=hf_token)
|
313 |
try:
|
314 |
progress(0, desc="Start uploading...")
|
315 |
+
api.create_repo(repo_id=new_repo_id, token=hf_token, private=is_private, exist_ok=True)
|
316 |
for path in Path(diffusers_folder).glob("*"):
|
317 |
if path.is_dir():
|
318 |
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
|
|
|
321 |
progress(1, desc="Uploaded.")
|
322 |
url = f"https://huggingface.co/{new_repo_id}"
|
323 |
except Exception as e:
|
324 |
+
print(f"Error: Failed to upload to {new_repo_id}. {e}")
|
|
|
325 |
return ""
|
326 |
return url
|
327 |
|
328 |
|
329 |
+
def convert_url_to_diffusers_repo(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True, is_overwrite=False, is_upload_sf=False,
|
330 |
+
repo_urls=[], half=True, vae=None, clip="", scheduler="Euler a",
|
331 |
+
lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
|
332 |
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
|
333 |
+
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY") # default Civitai API key
|
334 |
+
if not hf_token and os.environ.get("HF_TOKEN"): hf_token = os.environ.get("HF_TOKEN") # default HF write token
|
335 |
+
if not hf_user and os.environ.get("HF_USER"): hf_user = os.environ.get("HF_USER") # default username
|
336 |
if not hf_user:
|
337 |
print(f"Invalid user name: {hf_user}")
|
338 |
progress(1, desc=f"Invalid user name: {hf_user}")
|
339 |
+
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
|
|
340 |
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
|
341 |
+
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, hf_token, is_upload_sf, half, vae, scheduler, lora_dict, False, clip)
|
342 |
if not new_path: return ""
|
343 |
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
|
344 |
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
|
345 |
if not is_repo_name(new_repo_id):
|
346 |
print(f"Invalid repo name: {new_repo_id}")
|
347 |
progress(1, desc=f"Invalid repo name: {new_repo_id}")
|
348 |
+
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
349 |
+
if not is_overwrite and is_repo_exists(new_repo_id, hf_token):
|
350 |
print(f"Repo already exists: {new_repo_id}")
|
351 |
progress(1, desc=f"Repo already exists: {new_repo_id}")
|
352 |
+
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
353 |
repo_url = create_diffusers_repo(new_repo_id, new_path, is_private, hf_token)
|
354 |
shutil.rmtree(new_path)
|
355 |
if not repo_urls: repo_urls = []
|
356 |
repo_urls.append(repo_url)
|
357 |
+
md = "### Your new repo:\n"
|
358 |
for u in repo_urls:
|
359 |
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
|
360 |
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
|