Spaces:
Running
Running
Upload convert_url_to_diffusers_sdxl_gr.py
Browse files- convert_url_to_diffusers_sdxl_gr.py +65 -169
convert_url_to_diffusers_sdxl_gr.py
CHANGED
@@ -1,3 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import argparse
|
2 |
from pathlib import Path
|
3 |
import os
|
@@ -5,108 +15,30 @@ import torch
|
|
5 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
6 |
from transformers import CLIPTokenizer, CLIPTextModel
|
7 |
import gradio as gr
|
8 |
-
from huggingface_hub import hf_hub_download, HfApi
|
9 |
-
import urllib.parse
|
10 |
-
import re
|
11 |
import shutil
|
12 |
import gc
|
13 |
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
|
|
14 |
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
print(e)
|
35 |
-
|
36 |
-
|
37 |
-
def download_hf_file(directory, url, hf_token="", progress=gr.Progress(track_tqdm=True)):
|
38 |
-
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
39 |
-
try:
|
40 |
-
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
41 |
-
else: hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
|
42 |
-
except Exception as e:
|
43 |
-
print(f"Failed to download: {e}")
|
44 |
-
|
45 |
-
|
46 |
-
def download_thing(directory, url, civitai_api_key="", hf_token="", progress=gr.Progress(track_tqdm=True)):
|
47 |
-
url = url.strip()
|
48 |
-
if "drive.google.com" in url:
|
49 |
-
original_dir = os.getcwd()
|
50 |
-
os.chdir(directory)
|
51 |
-
os.system(f"gdown --fuzzy {url}")
|
52 |
-
os.chdir(original_dir)
|
53 |
-
elif "huggingface.co" in url:
|
54 |
-
url = url.replace("?download=true", "")
|
55 |
-
if "/blob/" in url:
|
56 |
-
url = url.replace("/blob/", "/resolve/")
|
57 |
-
user_header = f'"Authorization: Bearer {hf_token}"'
|
58 |
-
if hf_token:
|
59 |
-
download_hf_file(directory, url, hf_token)
|
60 |
-
#os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
61 |
-
else:
|
62 |
-
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
63 |
-
elif "civitai.com" in url:
|
64 |
-
if "?" in url:
|
65 |
-
url = url.split("?")[0]
|
66 |
-
if civitai_api_key:
|
67 |
-
url = url + f"?token={civitai_api_key}"
|
68 |
-
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
69 |
-
else:
|
70 |
-
print("You need an API key to download Civitai models.")
|
71 |
-
else:
|
72 |
-
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
73 |
-
|
74 |
-
|
75 |
-
def get_local_model_list(dir_path):
|
76 |
-
model_list = []
|
77 |
-
valid_extensions = ('.safetensors')
|
78 |
-
for file in Path(dir_path).glob("**/*.*"):
|
79 |
-
if file.is_file() and file.suffix in valid_extensions:
|
80 |
-
file_path = str(file)
|
81 |
-
model_list.append(file_path)
|
82 |
-
return model_list
|
83 |
-
|
84 |
-
|
85 |
-
def get_download_file(temp_dir, url, civitai_key, hf_token, progress=gr.Progress(track_tqdm=True)):
|
86 |
-
if not "http" in url and is_repo_name(url) and not Path(url).exists():
|
87 |
-
print(f"Use HF Repo: {url}")
|
88 |
-
new_file = url
|
89 |
-
elif not "http" in url and Path(url).exists():
|
90 |
-
print(f"Use local file: {url}")
|
91 |
-
new_file = url
|
92 |
-
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
|
93 |
-
print(f"File to download alreday exists: {url}")
|
94 |
-
new_file = f"{temp_dir}/{url.split('/')[-1]}"
|
95 |
-
else:
|
96 |
-
print(f"Start downloading: {url}")
|
97 |
-
before = get_local_model_list(temp_dir)
|
98 |
-
try:
|
99 |
-
download_thing(temp_dir, url.strip(), civitai_key, hf_token)
|
100 |
-
except Exception:
|
101 |
-
print(f"Download failed: {url}")
|
102 |
-
return ""
|
103 |
-
after = get_local_model_list(temp_dir)
|
104 |
-
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
|
105 |
-
if not new_file:
|
106 |
-
print(f"Download failed: {url}")
|
107 |
-
return ""
|
108 |
-
print(f"Download completed: {url}")
|
109 |
-
return new_file
|
110 |
|
111 |
|
112 |
from diffusers import (
|
@@ -224,19 +156,19 @@ tags:
|
|
224 |
f.write(md)
|
225 |
|
226 |
|
227 |
-
def fuse_loras(pipe, lora_dict={}, temp_dir=
|
228 |
if not lora_dict or not isinstance(lora_dict, dict): return pipe
|
229 |
a_list = []
|
230 |
w_list = []
|
231 |
for k, v in lora_dict.items():
|
232 |
if not k: continue
|
233 |
-
new_lora_file = get_download_file(temp_dir, k, civitai_key
|
234 |
if not new_lora_file or not Path(new_lora_file).exists():
|
235 |
print(f"LoRA not found: {k}")
|
236 |
continue
|
237 |
w_name = Path(new_lora_file).name
|
238 |
a_name = Path(new_lora_file).stem
|
239 |
-
pipe.load_lora_weights(new_lora_file, weight_name
|
240 |
a_list.append(a_name)
|
241 |
w_list.append(v)
|
242 |
if not a_list: return pipe
|
@@ -246,121 +178,84 @@ def fuse_loras(pipe, lora_dict={}, temp_dir=".", civitai_key="", hf_token=""):
|
|
246 |
return pipe
|
247 |
|
248 |
|
249 |
-
def convert_url_to_diffusers_sdxl(url, civitai_key="",
|
250 |
-
scheduler="Euler a", lora_dict={}, is_local=True,
|
251 |
progress(0, desc="Start converting...")
|
252 |
-
temp_dir =
|
253 |
-
new_file = get_download_file(temp_dir, url, civitai_key
|
254 |
if not new_file:
|
255 |
print(f"Not found: {url}")
|
256 |
return ""
|
257 |
-
|
258 |
|
259 |
-
type_kwargs = {}
|
260 |
kwargs = {}
|
261 |
-
|
262 |
-
|
263 |
-
elif dtype == "bf16": type_kwargs["torch_dtype"] = torch.bfloat16
|
264 |
-
elif dtype == "fp8": type_kwargs["torch_dtype"] = torch.float8_e4m3fn
|
265 |
|
266 |
new_vae_file = ""
|
267 |
if vae:
|
268 |
if is_repo_name(vae): my_vae = AutoencoderKL.from_pretrained(vae, **type_kwargs)
|
269 |
else:
|
270 |
-
new_vae_file = get_download_file(temp_dir, vae, civitai_key
|
271 |
-
|
272 |
-
kwargs["vae"] = my_vae
|
273 |
|
274 |
if clip:
|
275 |
my_tokenizer = CLIPTokenizer.from_pretrained(clip)
|
|
|
276 |
my_text_encoder = CLIPTextModel.from_pretrained(clip, **type_kwargs)
|
277 |
-
kwargs["
|
278 |
-
kwargs["text_encoder"] = my_text_encoder
|
279 |
|
280 |
pipe = None
|
281 |
if is_repo_name(url): pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
282 |
else: pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
283 |
|
284 |
-
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key
|
285 |
|
286 |
sconf = get_scheduler_config(scheduler)
|
287 |
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
288 |
|
289 |
-
pipe.save_pretrained(
|
290 |
|
291 |
-
if Path(
|
292 |
|
293 |
if not is_local:
|
294 |
-
if not is_repo_name(new_file) and is_upload_sf: shutil.move(str(Path(new_file).resolve()), str(Path(
|
295 |
else: os.remove(new_file)
|
296 |
del pipe
|
297 |
torch.cuda.empty_cache()
|
298 |
gc.collect()
|
299 |
|
300 |
progress(1, desc="Converted.")
|
301 |
-
return
|
302 |
-
|
303 |
-
|
304 |
-
def is_repo_exists(repo_id, hf_token):
|
305 |
-
api = HfApi(token=hf_token)
|
306 |
-
try:
|
307 |
-
if api.repo_exists(repo_id=repo_id): return True
|
308 |
-
else: return False
|
309 |
-
except Exception as e:
|
310 |
-
print(f"Error: Failed to connect {repo_id}. {e}")
|
311 |
-
return True # for safe
|
312 |
-
|
313 |
-
|
314 |
-
def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, progress=gr.Progress(track_tqdm=True)):
|
315 |
-
api = HfApi(token=hf_token)
|
316 |
-
try:
|
317 |
-
progress(0, desc="Start uploading...")
|
318 |
-
api.create_repo(repo_id=new_repo_id, token=hf_token, private=is_private, exist_ok=True)
|
319 |
-
for path in Path(diffusers_folder).glob("*"):
|
320 |
-
if path.is_dir():
|
321 |
-
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
|
322 |
-
elif path.is_file():
|
323 |
-
api.upload_file(repo_id=new_repo_id, path_or_fileobj=str(path), path_in_repo=path.name, token=hf_token)
|
324 |
-
progress(1, desc="Uploaded.")
|
325 |
-
url = f"https://huggingface.co/{new_repo_id}"
|
326 |
-
except Exception as e:
|
327 |
-
print(f"Error: Failed to upload to {new_repo_id}. {e}")
|
328 |
-
return ""
|
329 |
-
return url
|
330 |
|
331 |
|
332 |
def convert_url_to_diffusers_repo(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True, is_overwrite=False, is_upload_sf=False,
|
333 |
-
|
334 |
lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
|
335 |
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
|
|
|
336 |
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY") # default Civitai API key
|
337 |
if not hf_token and os.environ.get("HF_TOKEN"): hf_token = os.environ.get("HF_TOKEN") # default HF write token
|
338 |
if not hf_user and os.environ.get("HF_USER"): hf_user = os.environ.get("HF_USER") # default username
|
339 |
-
if not hf_user:
|
340 |
-
|
341 |
-
|
342 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
343 |
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
|
344 |
-
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key,
|
345 |
if not new_path: return ""
|
346 |
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
|
347 |
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
|
348 |
-
if not is_repo_name(new_repo_id):
|
349 |
-
|
350 |
-
|
351 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
352 |
-
if not is_overwrite and is_repo_exists(new_repo_id, hf_token):
|
353 |
-
print(f"Repo already exists: {new_repo_id}")
|
354 |
-
progress(1, desc=f"Repo already exists: {new_repo_id}")
|
355 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
356 |
-
repo_url = create_diffusers_repo(new_repo_id, new_path, is_private, hf_token)
|
357 |
shutil.rmtree(new_path)
|
358 |
-
if not
|
359 |
-
|
360 |
md = "### Your new repo:\n"
|
361 |
-
for u in
|
362 |
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
|
363 |
-
return gr.update(value=
|
364 |
|
365 |
|
366 |
if __name__ == "__main__":
|
@@ -386,10 +281,11 @@ if __name__ == "__main__":
|
|
386 |
args = parser.parse_args()
|
387 |
assert args.url is not None, "Must provide a URL!"
|
388 |
|
|
|
389 |
lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
|
390 |
-
|
391 |
if args.loras and Path(args.loras).exists():
|
392 |
for p in Path(args.loras).glob('**/*.safetensors'):
|
393 |
lora_dict[str(p)] = 1.0
|
|
|
394 |
|
395 |
-
convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.dtype, args.vae, args.scheduler, lora_dict,
|
|
|
1 |
+
import os
|
2 |
+
if os.environ.get("SPACES_ZERO_GPU") is not None:
|
3 |
+
import spaces
|
4 |
+
else:
|
5 |
+
class spaces:
|
6 |
+
@staticmethod
|
7 |
+
def GPU(func):
|
8 |
+
def wrapper(*args, **kwargs):
|
9 |
+
return func(*args, **kwargs)
|
10 |
+
return wrapper
|
11 |
import argparse
|
12 |
from pathlib import Path
|
13 |
import os
|
|
|
15 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
16 |
from transformers import CLIPTokenizer, CLIPTextModel
|
17 |
import gradio as gr
|
|
|
|
|
|
|
18 |
import shutil
|
19 |
import gc
|
20 |
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
21 |
+
from utils import (set_token, is_repo_exists, is_repo_name, get_download_file, upload_repo)
|
22 |
|
23 |
|
24 |
+
@spaces.GPU
|
25 |
+
def fake_gpu():
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
TEMP_DIR = "."
|
30 |
+
|
31 |
+
|
32 |
+
DTYPE_DICT = {
|
33 |
+
"fp16": torch.float16,
|
34 |
+
"bf16": torch.bfloat16,
|
35 |
+
"fp32": torch.float32,
|
36 |
+
"fp8": torch.float8_e4m3fn
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
def get_dtype(dtype: str):
|
41 |
+
return DTYPE_DICT.get(dtype, torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
from diffusers import (
|
|
|
156 |
f.write(md)
|
157 |
|
158 |
|
159 |
+
def fuse_loras(pipe, lora_dict={}, temp_dir=TEMP_DIR, civitai_key=""):
|
160 |
if not lora_dict or not isinstance(lora_dict, dict): return pipe
|
161 |
a_list = []
|
162 |
w_list = []
|
163 |
for k, v in lora_dict.items():
|
164 |
if not k: continue
|
165 |
+
new_lora_file = get_download_file(temp_dir, k, civitai_key)
|
166 |
if not new_lora_file or not Path(new_lora_file).exists():
|
167 |
print(f"LoRA not found: {k}")
|
168 |
continue
|
169 |
w_name = Path(new_lora_file).name
|
170 |
a_name = Path(new_lora_file).stem
|
171 |
+
pipe.load_lora_weights(new_lora_file, weight_name=w_name, adapter_name=a_name)
|
172 |
a_list.append(a_name)
|
173 |
w_list.append(v)
|
174 |
if not a_list: return pipe
|
|
|
178 |
return pipe
|
179 |
|
180 |
|
181 |
+
def convert_url_to_diffusers_sdxl(url, civitai_key="", is_upload_sf=False, dtype="fp16", vae="", clip="",
|
182 |
+
scheduler="Euler a", lora_dict={}, is_local=True, progress=gr.Progress(track_tqdm=True)):
|
183 |
progress(0, desc="Start converting...")
|
184 |
+
temp_dir = TEMP_DIR
|
185 |
+
new_file = get_download_file(temp_dir, url, civitai_key)
|
186 |
if not new_file:
|
187 |
print(f"Not found: {url}")
|
188 |
return ""
|
189 |
+
new_dir = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
190 |
|
|
|
191 |
kwargs = {}
|
192 |
+
type_kwargs = {}
|
193 |
+
if dtype != "default": type_kwargs["torch_dtype"] = get_dtype(dtype)
|
|
|
|
|
194 |
|
195 |
new_vae_file = ""
|
196 |
if vae:
|
197 |
if is_repo_name(vae): my_vae = AutoencoderKL.from_pretrained(vae, **type_kwargs)
|
198 |
else:
|
199 |
+
new_vae_file = get_download_file(temp_dir, vae, civitai_key)
|
200 |
+
my_vae = AutoencoderKL.from_single_file(new_vae_file, **type_kwargs) if new_vae_file else None
|
201 |
+
if my_vae: kwargs["vae"] = my_vae
|
202 |
|
203 |
if clip:
|
204 |
my_tokenizer = CLIPTokenizer.from_pretrained(clip)
|
205 |
+
if my_tokenizer: kwargs["tokenizer"] = my_tokenizer
|
206 |
my_text_encoder = CLIPTextModel.from_pretrained(clip, **type_kwargs)
|
207 |
+
if my_text_encoder: kwargs["text_encoder"] = my_text_encoder
|
|
|
208 |
|
209 |
pipe = None
|
210 |
if is_repo_name(url): pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
211 |
else: pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
212 |
|
213 |
+
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
|
214 |
|
215 |
sconf = get_scheduler_config(scheduler)
|
216 |
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
217 |
|
218 |
+
pipe.save_pretrained(new_dir, safe_serialization=True, use_safetensors=True)
|
219 |
|
220 |
+
if Path(new_dir).exists(): save_readme_md(new_dir, url)
|
221 |
|
222 |
if not is_local:
|
223 |
+
if not is_repo_name(new_file) and is_upload_sf: shutil.move(str(Path(new_file).resolve()), str(Path(new_dir, Path(new_file).name).resolve()))
|
224 |
else: os.remove(new_file)
|
225 |
del pipe
|
226 |
torch.cuda.empty_cache()
|
227 |
gc.collect()
|
228 |
|
229 |
progress(1, desc="Converted.")
|
230 |
+
return new_dir
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
|
233 |
def convert_url_to_diffusers_repo(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True, is_overwrite=False, is_upload_sf=False,
|
234 |
+
urls=[], dtype="fp16", vae="", clip="", scheduler="Euler a",
|
235 |
lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
|
236 |
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
|
237 |
+
is_local = False
|
238 |
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY") # default Civitai API key
|
239 |
if not hf_token and os.environ.get("HF_TOKEN"): hf_token = os.environ.get("HF_TOKEN") # default HF write token
|
240 |
if not hf_user and os.environ.get("HF_USER"): hf_user = os.environ.get("HF_USER") # default username
|
241 |
+
if not hf_user: raise gr.Error(f"Invalid user name: {hf_user}")
|
242 |
+
if not hf_repo and os.environ.get("HF_REPO"): hf_repo = os.environ.get("HF_REPO") # default reponame
|
243 |
+
set_token(hf_token)
|
|
|
244 |
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
|
245 |
+
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, is_upload_sf, dtype, vae, clip, scheduler, lora_dict, is_local)
|
246 |
if not new_path: return ""
|
247 |
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
|
248 |
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
|
249 |
+
if not is_repo_name(new_repo_id): raise gr.Error(f"Invalid repo name: {new_repo_id}")
|
250 |
+
if not is_overwrite and is_repo_exists(new_repo_id): raise gr.Error(f"Repo already exists: {new_repo_id}")
|
251 |
+
repo_url = upload_repo(new_repo_id, new_path, is_private)
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
shutil.rmtree(new_path)
|
253 |
+
if not urls: urls = []
|
254 |
+
urls.append(repo_url)
|
255 |
md = "### Your new repo:\n"
|
256 |
+
for u in urls:
|
257 |
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
|
258 |
+
return gr.update(value=urls, choices=urls), gr.update(value=md)
|
259 |
|
260 |
|
261 |
if __name__ == "__main__":
|
|
|
281 |
args = parser.parse_args()
|
282 |
assert args.url is not None, "Must provide a URL!"
|
283 |
|
284 |
+
is_local = True
|
285 |
lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
|
|
|
286 |
if args.loras and Path(args.loras).exists():
|
287 |
for p in Path(args.loras).glob('**/*.safetensors'):
|
288 |
lora_dict[str(p)] = 1.0
|
289 |
+
clip = ""
|
290 |
|
291 |
+
convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.dtype, args.vae, clip, args.scheduler, lora_dict, is_local)
|