import torch import gradio as gr from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(inputs): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"] return text demo = gr.Blocks() mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources=["microphone"], type="filepath", scale=4), ], outputs="text", title="Whisper Large V3: Transcribe Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ) ) with demo: gr.TabbedInterface([mf_transcribe], ["Microphone"]) demo.launch()