Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 16,836 Bytes
2c3bb3b 890e483 1829379 ee1a637 2c3bb3b 890e483 1829379 890e483 2c3bb3b 0405ac0 2c3bb3b 890e483 ee1a637 890e483 ee1a637 890e483 ee1a637 2c3bb3b ee1a637 1620ce5 890e483 ee1a637 890e483 1620ce5 ee1a637 890e483 ee1a637 890e483 ee1a637 890e483 1620ce5 ee1a637 1620ce5 2c3bb3b ee1a637 2c3bb3b ee1a637 1620ce5 2c3bb3b 1620ce5 2c3bb3b 1620ce5 2c3bb3b 1620ce5 890e483 1620ce5 ee1a637 1620ce5 0405ac0 1620ce5 ee1a637 890e483 ee1a637 df985e4 890e483 1620ce5 ee1a637 890e483 ee1a637 0405ac0 1620ce5 df985e4 0405ac0 1620ce5 ee1a637 1620ce5 ee1a637 890e483 0405ac0 1620ce5 0405ac0 1620ce5 ee1a637 1620ce5 ee1a637 890e483 1620ce5 2c3bb3b ee1a637 1620ce5 1829379 1620ce5 ee1a637 1620ce5 ee1a637 1620ce5 ee1a637 1620ce5 ee1a637 1620ce5 ee1a637 1620ce5 2c3bb3b 1620ce5 df985e4 1620ce5 ee1a637 2c3bb3b 1620ce5 ee1a637 2c3bb3b 1620ce5 ee1a637 1620ce5 ee1a637 1620ce5 ee1a637 1620ce5 2c3bb3b ee1a637 1620ce5 2c3bb3b ee1a637 1620ce5 2c3bb3b 1620ce5 ee1a637 1829379 ee1a637 2c3bb3b ee1a637 1620ce5 ee1a637 2c3bb3b ee1a637 2c3bb3b 1829379 ee1a637 2c3bb3b 890e483 ee1a637 2c3bb3b ee1a637 1620ce5 ee1a637 890e483 2c3bb3b 890e483 2c3bb3b 890e483 1829379 2c3bb3b 1829379 2c3bb3b 1829379 2c3bb3b 1829379 890e483 1829379 890e483 1829379 2c3bb3b 1829379 890e483 1829379 890e483 1829379 890e483 2c3bb3b 890e483 2c3bb3b 890e483 1829379 890e483 1829379 890e483 1829379 890e483 2c3bb3b 1829379 2c3bb3b 1829379 890e483 2c3bb3b ee1a637 890e483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
# -*- coding:utf-8 -*-
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
import json
import gradio as gr
# import openai
import os
import traceback
import requests
# import markdown
import csv
import mdtex2html
from pypinyin import lazy_pinyin
from presets import *
import tiktoken
from tqdm import tqdm
import colorama
if TYPE_CHECKING:
from typing import TypedDict
class DataframeData(TypedDict):
headers: List[str]
data: List[List[str | int | bool]]
initial_prompt = "You are a helpful assistant."
API_URL = "https://api.openai.com/v1/chat/completions"
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"
def postprocess(
self, y: List[Tuple[str | None, str | None]]
) -> List[Tuple[str | None, str | None]]:
"""
Parameters:
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
Returns:
List of tuples representing the message and response. Each message and response will be a string of HTML.
"""
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
# None if message is None else markdown.markdown(message),
# None if response is None else markdown.markdown(response),
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
def count_token(input_str):
encoding = tiktoken.get_encoding("cl100k_base")
length = len(encoding.encode(input_str))
return length
def parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def construct_text(role, text):
return {"role": role, "content": text}
def construct_user(text):
return construct_text("user", text)
def construct_system(text):
return construct_text("system", text)
def construct_assistant(text):
return construct_text("assistant", text)
def construct_token_message(token, stream=False):
return f"Token 计数: {token}"
def get_response(openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
history = [construct_system(system_prompt), *history]
payload = {
"model": selected_model,
"messages": history, # [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
if stream:
timeout = timeout_streaming
else:
timeout = timeout_all
response = requests.post(API_URL, headers=headers, json=payload, stream=True, timeout=timeout)
return response
def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model):
def get_return_value():
return chatbot, history, status_text, all_token_counts
print("实时回答模式")
partial_words = ""
counter = 0
status_text = "开始实时传输回答……"
history.append(construct_user(inputs))
history.append(construct_assistant(""))
chatbot.append((parse_text(inputs), ""))
user_token_count = 0
if len(all_token_counts) == 0:
system_prompt_token_count = count_token(system_prompt)
user_token_count = count_token(inputs) + system_prompt_token_count
else:
user_token_count = count_token(inputs)
all_token_counts.append(user_token_count)
print(f"输入token计数: {user_token_count}")
yield get_return_value()
try:
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, True, selected_model)
except requests.exceptions.ConnectTimeout:
status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
yield get_return_value()
return
except requests.exceptions.ReadTimeout:
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
yield get_return_value()
return
yield get_return_value()
error_json_str = ""
for chunk in tqdm(response.iter_lines()):
if counter == 0:
counter += 1
continue
counter += 1
# check whether each line is non-empty
if chunk:
chunk = chunk.decode()
chunklength = len(chunk)
try:
chunk = json.loads(chunk[6:])
except json.JSONDecodeError:
print(chunk)
error_json_str += chunk
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}"
yield get_return_value()
continue
# decode each line as response data is in bytes
if chunklength > 6 and "delta" in chunk['choices'][0]:
finish_reason = chunk['choices'][0]['finish_reason']
status_text = construct_token_message(sum(all_token_counts), stream=True)
if finish_reason == "stop":
yield get_return_value()
break
try:
partial_words = partial_words + chunk['choices'][0]["delta"]["content"]
except KeyError:
status_text = standard_error_msg + "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " + str(sum(all_token_counts))
yield get_return_value()
break
history[-1] = construct_assistant(partial_words)
chatbot[-1] = (parse_text(inputs), parse_text(partial_words))
all_token_counts[-1] += 1
yield get_return_value()
def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model):
print("一次性回答模式")
history.append(construct_user(inputs))
history.append(construct_assistant(""))
chatbot.append((parse_text(inputs), ""))
all_token_counts.append(count_token(inputs))
try:
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, False, selected_model)
except requests.exceptions.ConnectTimeout:
status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
except requests.exceptions.ProxyError:
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
except requests.exceptions.SSLError:
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
response = json.loads(response.text)
content = response["choices"][0]["message"]["content"]
history[-1] = construct_assistant(content)
chatbot.append((parse_text(inputs), parse_text(content)))
total_token_count = response["usage"]["total_tokens"]
all_token_counts[-1] = total_token_count - sum(all_token_counts)
status_text = construct_token_message(total_token_count)
return chatbot, history, status_text, all_token_counts
def predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, stream=False, selected_model = MODELS[0], should_check_token_count = True): # repetition_penalty, top_k
print("输入为:" +colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
if len(openai_api_key) != 51:
status_text = standard_error_msg + no_apikey_msg
print(status_text)
chatbot.append((parse_text(inputs), ""))
if len(history) == 0:
history.append(construct_user(inputs))
history.append("")
all_token_counts.append(0)
else:
history[-2] = construct_user(inputs)
yield chatbot, history, status_text, all_token_counts
return
yield chatbot, history, "开始生成回答……", all_token_counts
if stream:
print("使用流式传输")
iter = stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model)
for chatbot, history, status_text, all_token_counts in iter:
yield chatbot, history, status_text, all_token_counts
else:
print("不使用流式传输")
chatbot, history, status_text, all_token_counts = predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model)
yield chatbot, history, status_text, all_token_counts
print(f"传输完毕。当前token计数为{all_token_counts}")
if len(history) > 1 and history[-1]['content'] != inputs:
print("回答为:" +colorama.Fore.BLUE + f"{history[-1]['content']}" + colorama.Style.RESET_ALL)
if stream:
max_token = max_token_streaming
else:
max_token = max_token_all
if sum(all_token_counts) > max_token and should_check_token_count:
print(f"精简token中{all_token_counts}/{max_token}")
iter = reduce_token_size(openai_api_key, system_prompt, history, chatbot, all_token_counts, top_p, temperature, stream=False, hidden=True)
for chatbot, history, status_text, all_token_counts in iter:
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
yield chatbot, history, status_text, all_token_counts
def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, selected_model = MODELS[0]):
print("重试中……")
if len(history) == 0:
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
return
history.pop()
inputs = history.pop()["content"]
token_count.pop()
iter = predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=stream, selected_model=selected_model)
print("重试完毕")
for x in iter:
yield x
def reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, hidden=False, selected_model = MODELS[0]):
print("开始减少token数量……")
iter = predict(openai_api_key, system_prompt, history, summarize_prompt, chatbot, token_count, top_p, temperature, stream=stream, selected_model = selected_model, should_check_token_count=False)
for chatbot, history, status_text, previous_token_count in iter:
history = history[-2:]
token_count = previous_token_count[-1:]
if hidden:
chatbot.pop()
yield chatbot, history, construct_token_message(sum(token_count), stream=stream), token_count
print("减少token数量完毕")
def delete_last_conversation(chatbot, history, previous_token_count):
if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]:
print("由于包含报错信息,只删除chatbot记录")
chatbot.pop()
return chatbot, history
if len(history) > 0:
print("删除了一组对话历史")
history.pop()
history.pop()
if len(chatbot) > 0:
print("删除了一组chatbot对话")
chatbot.pop()
if len(previous_token_count) > 0:
print("删除了一组对话的token计数记录")
previous_token_count.pop()
return chatbot, history, previous_token_count, construct_token_message(sum(previous_token_count))
def save_chat_history(filename, system, history, chatbot):
print("保存对话历史中……")
if filename == "":
return
if not filename.endswith(".json"):
filename += ".json"
os.makedirs(HISTORY_DIR, exist_ok=True)
json_s = {"system": system, "history": history, "chatbot": chatbot}
print(json_s)
with open(os.path.join(HISTORY_DIR, filename), "w") as f:
json.dump(json_s, f)
print("保存对话历史完毕")
def load_chat_history(filename, system, history, chatbot):
print("加载对话历史中……")
try:
with open(os.path.join(HISTORY_DIR, filename), "r") as f:
json_s = json.load(f)
try:
if type(json_s["history"][0]) == str:
print("历史记录格式为旧版,正在转换……")
new_history = []
for index, item in enumerate(json_s["history"]):
if index % 2 == 0:
new_history.append(construct_user(item))
else:
new_history.append(construct_assistant(item))
json_s["history"] = new_history
print(new_history)
except:
# 没有对话历史
pass
print("加载对话历史完毕")
return filename, json_s["system"], json_s["history"], json_s["chatbot"]
except FileNotFoundError:
print("没有找到对话历史文件,不执行任何操作")
return filename, system, history, chatbot
def sorted_by_pinyin(list):
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0])
def get_file_names(dir, plain=False, filetypes=[".json"]):
print(f"获取文件名列表,目录为{dir},文件类型为{filetypes},是否为纯文本列表{plain}")
files = []
try:
for type in filetypes:
files += [f for f in os.listdir(dir) if f.endswith(type)]
except FileNotFoundError:
files = []
files = sorted_by_pinyin(files)
if files == []:
files = [""]
if plain:
return files
else:
return gr.Dropdown.update(choices=files)
def get_history_names(plain=False):
print("获取历史记录文件名列表")
return get_file_names(HISTORY_DIR, plain)
def load_template(filename, mode=0):
print(f"加载模板文件{filename},模式为{mode}(0为返回字典和下拉菜单,1为返回下拉菜单,2为返回字典)")
lines = []
print("Loading template...")
if filename.endswith(".json"):
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as f:
lines = json.load(f)
lines = [[i["act"], i["prompt"]] for i in lines]
else:
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile:
reader = csv.reader(csvfile)
lines = list(reader)
lines = lines[1:]
if mode == 1:
return sorted_by_pinyin([row[0] for row in lines])
elif mode == 2:
return {row[0]:row[1] for row in lines}
else:
choices = sorted_by_pinyin([row[0] for row in lines])
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0])
def get_template_names(plain=False):
print("获取模板文件名列表")
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"])
def get_template_content(templates, selection, original_system_prompt):
print(f"应用模板中,选择为{selection},原始系统提示为{original_system_prompt}")
try:
return templates[selection]
except:
return original_system_prompt
def reset_state():
print("重置状态")
return [], [], [], construct_token_message(0)
def reset_textbox():
return gr.update(value='')
|