File size: 11,053 Bytes
890e483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee87114
 
 
 
 
 
 
890e483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""Contains all of the components that can be used with Gradio Interface / Blocks.
Along with the docs for each component, you can find the names of example demos that use
each component. These demos are located in the `demo` directory."""

from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
import json
import gradio as gr
# import openai
import os
import traceback
import requests
# import markdown
import csv
import mdtex2html

if TYPE_CHECKING:
    from typing import TypedDict

    class DataframeData(TypedDict):
        headers: List[str]
        data: List[List[str | int | bool]]

initial_prompt = "You are a helpful assistant."
API_URL = "https://api.openai.com/v1/chat/completions"
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"

def postprocess(
        self, y: List[Tuple[str | None, str | None]]
    ) -> List[Tuple[str | None, str | None]]:
        """
        Parameters:
            y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
        Returns:
            List of tuples representing the message and response. Each message and response will be a string of HTML.
        """
        if y is None:
            return []
        for i, (message, response) in enumerate(y):
            y[i] = (
                # None if message is None else markdown.markdown(message),
                # None if response is None else markdown.markdown(response),
                None if message is None else mdtex2html.convert(message),
                None if response is None else mdtex2html.convert(response),
            )
        return y

def parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    firstline = False
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    # line = line.replace("‘", "'")
                    # line = line.replace("“", '"')
                    line = line.replace("`", "\`")
                    # line = line.replace("\"", "`\"`")
                    # line = line.replace("\'", "`\'`")
                    # line = line.replace("'``'", "''")
                    # line = line.replace("&", "&amp;")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>"+line
    text = "".join(lines)
    return text

def predict(inputs, top_p, temperature, openai_api_key, chatbot=[], history=[], system_prompt=initial_prompt, retry=False, summary=False, retry_on_crash = False, stream = True):  # repetition_penalty, top_k

    if "猫娘" in inputs:
        chatbot.append((inputs, '喵~主人请点击<a href="https://www.bilibili.com/video/BV1GJ411x7h7/">这个链接</a>查看刺激内容哦~'))
        yield chatbot, history, "status: 喵~"
        print(f"########## 有人上钩了: {inputs} ##########")
        return
    print(f"====== 收到问题: {inputs} =======")
    
    if retry_on_crash:
        retry = True

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {openai_api_key}"
    }

    chat_counter = len(history) // 2

    print(f"chat_counter - {chat_counter}")

    messages = []
    if chat_counter:
        for index in range(0, 2*chat_counter, 2):
            temp1 = {}
            temp1["role"] = "user"
            temp1["content"] = history[index]
            temp2 = {}
            temp2["role"] = "assistant"
            temp2["content"] = history[index+1]
            if temp1["content"] != "":
                if temp2["content"] != "" or retry:
                    messages.append(temp1)
                    messages.append(temp2)
            else:
                messages[-1]['content'] = temp2['content']
    if retry and chat_counter:
        if retry_on_crash:
            messages = messages[-6:]
        messages.pop()
    elif summary:
        history = [*[i["content"] for i in messages[-2:]], "我们刚刚聊了什么?"]
        messages.append(compose_user(
            "请帮我总结一下上述对话的内容,实现减少字数的同时,保证对话的质量。在总结中不要加入这一句话。"))
    else:
        temp3 = {}
        temp3["role"] = "user"
        temp3["content"] = inputs
        messages.append(temp3)
        chat_counter += 1
    messages = [compose_system(system_prompt), *messages]
    # messages
    payload = {
        "model": "gpt-3.5-turbo",
        "messages": messages,  # [{"role": "user", "content": f"{inputs}"}],
        "temperature": temperature,  # 1.0,
        "top_p": top_p,  # 1.0,
        "n": 1,
        "stream": stream,
        "presence_penalty": 0,
        "frequency_penalty": 0,
    }

    if not summary:
        history.append(inputs)
    else:
        print("精简中...")

    print(f"payload: {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    try:
        response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    except:
        history.append("")
        chatbot.append(inputs, "")
        yield history, chatbot, f"出现了网络错误"
        return

    token_counter = 0
    partial_words = ""

    counter = 0
    if stream:
        chatbot.append((parse_text(history[-1]), ""))
        for chunk in response.iter_lines():
            if counter == 0:
                counter += 1
                continue
            counter += 1
            # check whether each line is non-empty
            if chunk:
                # decode each line as response data is in bytes
                try:
                    if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
                        chunkjson = json.loads(chunk.decode()[6:])
                        status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}"
                        yield chatbot, history, status_text
                        break
                except Exception as e:
                    traceback.print_exc()
                    if not retry_on_crash:
                        print("正在尝试使用缩短的context重新生成……")
                        chatbot.pop()
                        history.append("")
                        yield next(predict(inputs, top_p, temperature, openai_api_key, chatbot, history, system_prompt, retry, summary=False, retry_on_crash=True, stream=False))
                    else:
                        msg = "☹️发生了错误:生成失败,请检查网络"
                        print(msg)
                        history.append(inputs, "")
                        chatbot.append(inputs, msg)
                        yield chatbot, history, "status: ERROR"
                    break
                chunkjson = json.loads(chunk.decode()[6:])
                status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}"
                partial_words = partial_words + \
                    json.loads(chunk.decode()[6:])[
                        'choices'][0]["delta"]["content"]
                if token_counter == 0:
                    history.append(" " + partial_words)
                else:
                    history[-1] = partial_words
                chatbot[-1] = (parse_text(history[-2]), parse_text(history[-1]))
                token_counter += 1
                yield chatbot, history, status_text
    else:
        try:
            responsejson = json.loads(response.text)
            content = responsejson["choices"][0]["message"]["content"]
            history.append(content)
            chatbot.append((parse_text(history[-2]), parse_text(content)))
            status_text = "精简完成"
        except:
            chatbot.append((parse_text(history[-1]), "☹️发生了错误,请检查网络连接或者稍后再试。"))
            status_text = "status: ERROR"
        yield chatbot, history, status_text



def delete_last_conversation(chatbot, history):
    if "☹️发生了错误" in chatbot[-1][1]:
        chatbot.pop()
        print(history)
        return chatbot, history
    history.pop()
    history.pop()
    print(history)
    return chatbot, history

def save_chat_history(filename, system, history, chatbot):
    if filename == "":
        return
    if not filename.endswith(".json"):
        filename += ".json"
    os.makedirs(HISTORY_DIR, exist_ok=True)
    json_s = {"system": system, "history": history, "chatbot": chatbot}
    print(json_s)
    with open(os.path.join(HISTORY_DIR, filename), "w") as f:
        json.dump(json_s, f)


def load_chat_history(filename):
    with open(os.path.join(HISTORY_DIR, filename), "r") as f:
        json_s = json.load(f)
    print(json_s)
    return filename, json_s["system"], json_s["history"], json_s["chatbot"]


def get_file_names(dir, plain=False, filetype=".json"):
    # find all json files in the current directory and return their names
    try:
        files = sorted([f for f in os.listdir(dir) if f.endswith(filetype)])
    except FileNotFoundError:
        files = []
    if plain:
        return files
    else:
        return gr.Dropdown.update(choices=files)

def get_history_names(plain=False):
    return get_file_names(HISTORY_DIR, plain)

def load_template(filename, mode=0):
    lines = []
    with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile:
        reader = csv.reader(csvfile)
        lines = list(reader)
    lines = lines[1:]
    if mode == 1:
        return sorted([row[0] for row in lines])
    elif mode == 2:
        return {row[0]:row[1] for row in lines}
    else:
        return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=sorted([row[0] for row in lines]))

def get_template_names(plain=False):
    return get_file_names(TEMPLATES_DIR, plain, filetype=".csv")

def reset_state():
    return [], []


def compose_system(system_prompt):
    return {"role": "system", "content": system_prompt}


def compose_user(user_input):
    return {"role": "user", "content": user_input}


def reset_textbox():
    return gr.update(value='')