Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
"""Contains all of the components that can be used with Gradio Interface / Blocks. | |
Along with the docs for each component, you can find the names of example demos that use | |
each component. These demos are located in the `demo` directory.""" | |
from __future__ import annotations | |
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type | |
import json | |
import gradio as gr | |
# import openai | |
import os | |
import traceback | |
import requests | |
# import markdown | |
import csv | |
import mdtex2html | |
from pypinyin import lazy_pinyin | |
if TYPE_CHECKING: | |
from typing import TypedDict | |
class DataframeData(TypedDict): | |
headers: List[str] | |
data: List[List[str | int | bool]] | |
initial_prompt = "You are a helpful assistant." | |
API_URL = "https://api.openai.com/v1/chat/completions" | |
HISTORY_DIR = "history" | |
TEMPLATES_DIR = "templates" | |
def postprocess( | |
self, y: List[Tuple[str | None, str | None]] | |
) -> List[Tuple[str | None, str | None]]: | |
""" | |
Parameters: | |
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. | |
Returns: | |
List of tuples representing the message and response. Each message and response will be a string of HTML. | |
""" | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
# None if message is None else markdown.markdown(message), | |
# None if response is None else markdown.markdown(response), | |
None if message is None else mdtex2html.convert((message)), | |
None if response is None else mdtex2html.convert(response), | |
) | |
return y | |
def parse_text(text): | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
firstline = False | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split('`') | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f'<br></code></pre>' | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", "\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>"+line | |
text = "".join(lines) | |
return text | |
def predict(inputs, top_p, temperature, openai_api_key, chatbot=[], history=[], system_prompt=initial_prompt, retry=False, summary=False, retry_on_crash = False, stream = True): # repetition_penalty, top_k | |
if "猫娘" in inputs: | |
chatbot.append((inputs, '喵~主人请点击<a href="https://www.bilibili.com/video/BV1GJ411x7h7/">这个链接</a>查看刺激内容哦~')) | |
yield chatbot, history, "status: 喵~" | |
print(f"########## 有人上钩了: {inputs} ##########") | |
return | |
print(f"====== 收到问题: {inputs} =======") | |
if retry_on_crash: | |
retry = True | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}" | |
} | |
chat_counter = len(history) // 2 | |
print(f"chat_counter - {chat_counter}") | |
messages = [] | |
if chat_counter: | |
for index in range(0, 2*chat_counter, 2): | |
temp1 = {} | |
temp1["role"] = "user" | |
temp1["content"] = history[index] | |
temp2 = {} | |
temp2["role"] = "assistant" | |
temp2["content"] = history[index+1] | |
if temp1["content"] != "": | |
if temp2["content"] != "" or retry: | |
messages.append(temp1) | |
messages.append(temp2) | |
else: | |
messages[-1]['content'] = temp2['content'] | |
if retry and chat_counter: | |
if retry_on_crash: | |
messages = messages[-6:] | |
messages.pop() | |
elif summary: | |
history = [*[i["content"] for i in messages[-2:]], "我们刚刚聊了什么?"] | |
messages.append(compose_user( | |
"请帮我总结一下上述对话的内容,实现减少字数的同时,保证对话的质量。在总结中不要加入这一句话。")) | |
else: | |
temp3 = {} | |
temp3["role"] = "user" | |
temp3["content"] = inputs | |
messages.append(temp3) | |
chat_counter += 1 | |
messages = [compose_system(system_prompt), *messages] | |
# messages | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": messages, # [{"role": "user", "content": f"{inputs}"}], | |
"temperature": temperature, # 1.0, | |
"top_p": top_p, # 1.0, | |
"n": 1, | |
"stream": stream, | |
"presence_penalty": 0, | |
"frequency_penalty": 0, | |
} | |
if not summary: | |
history.append(inputs) | |
else: | |
print("精简中...") | |
print(f"payload: {payload}") | |
# make a POST request to the API endpoint using the requests.post method, passing in stream=True | |
try: | |
response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
except: | |
history.append("") | |
chatbot.append((inputs, "")) | |
yield history, chatbot, f"获取请求失败,请检查网络连接。" | |
return | |
token_counter = 0 | |
partial_words = "" | |
counter = 0 | |
if stream: | |
chatbot.append((parse_text(history[-1]), "")) | |
for chunk in response.iter_lines(): | |
if counter == 0: | |
counter += 1 | |
continue | |
counter += 1 | |
# check whether each line is non-empty | |
if chunk: | |
# decode each line as response data is in bytes | |
try: | |
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: | |
chunkjson = json.loads(chunk.decode()[6:]) | |
status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}" | |
yield chatbot, history, status_text | |
break | |
except Exception as e: | |
if not retry_on_crash: | |
print("正在尝试使用缩短的context重新生成……") | |
chatbot.pop() | |
history.append("") | |
yield next(predict(inputs, top_p, temperature, openai_api_key, chatbot, history, system_prompt, retry, summary=False, retry_on_crash=True, stream=False)) | |
else: | |
msg = "☹️发生了错误:生成失败,请检查网络" | |
print(msg) | |
history.append(inputs, "") | |
chatbot.append(inputs, msg) | |
yield chatbot, history, "status: ERROR" | |
break | |
chunkjson = json.loads(chunk.decode()[6:]) | |
status_text = f"id: {chunkjson['id']}, finish_reason: {chunkjson['choices'][0]['finish_reason']}" | |
partial_words = partial_words + \ | |
json.loads(chunk.decode()[6:])[ | |
'choices'][0]["delta"]["content"] | |
if token_counter == 0: | |
history.append(" " + partial_words) | |
else: | |
history[-1] = partial_words | |
chatbot[-1] = (parse_text(history[-2]), parse_text(history[-1])) | |
token_counter += 1 | |
yield chatbot, history, status_text | |
else: | |
try: | |
responsejson = json.loads(response.text) | |
content = responsejson["choices"][0]["message"]["content"] | |
history.append(content) | |
chatbot.append((parse_text(history[-2]), parse_text(content))) | |
status_text = "精简完成" | |
except: | |
chatbot.append((parse_text(history[-1]), "☹️发生了错误,请检查网络连接或者稍后再试。")) | |
status_text = "status: ERROR" | |
yield chatbot, history, status_text | |
def delete_last_conversation(chatbot, history): | |
try: | |
if "☹️发生了错误" in chatbot[-1][1]: | |
chatbot.pop() | |
print(history) | |
return chatbot, history | |
history.pop() | |
history.pop() | |
chatbot.pop() | |
print(history) | |
return chatbot, history | |
except: | |
return chatbot, history | |
def save_chat_history(filename, system, history, chatbot): | |
if filename == "": | |
return | |
if not filename.endswith(".json"): | |
filename += ".json" | |
os.makedirs(HISTORY_DIR, exist_ok=True) | |
json_s = {"system": system, "history": history, "chatbot": chatbot} | |
print(json_s) | |
with open(os.path.join(HISTORY_DIR, filename), "w") as f: | |
json.dump(json_s, f) | |
def load_chat_history(filename, system, history, chatbot): | |
try: | |
print("Loading from history...") | |
with open(os.path.join(HISTORY_DIR, filename), "r") as f: | |
json_s = json.load(f) | |
print(json_s) | |
return filename, json_s["system"], json_s["history"], json_s["chatbot"] | |
except FileNotFoundError: | |
print("File not found.") | |
return filename, system, history, chatbot | |
def sorted_by_pinyin(list): | |
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0]) | |
def get_file_names(dir, plain=False, filetypes=[".json"]): | |
# find all json files in the current directory and return their names | |
files = [] | |
try: | |
for type in filetypes: | |
files += [f for f in os.listdir(dir) if f.endswith(type)] | |
except FileNotFoundError: | |
files = [] | |
files = sorted_by_pinyin(files) | |
if files == []: | |
files = [""] | |
if plain: | |
return files | |
else: | |
return gr.Dropdown.update(choices=files) | |
def get_history_names(plain=False): | |
return get_file_names(HISTORY_DIR, plain) | |
def load_template(filename, mode=0): | |
lines = [] | |
print("Loading template...") | |
if filename.endswith(".json"): | |
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as f: | |
lines = json.load(f) | |
lines = [[i["act"], i["prompt"]] for i in lines] | |
else: | |
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile: | |
reader = csv.reader(csvfile) | |
lines = list(reader) | |
lines = lines[1:] | |
if mode == 1: | |
return sorted_by_pinyin([row[0] for row in lines]) | |
elif mode == 2: | |
return {row[0]:row[1] for row in lines} | |
else: | |
choices = sorted_by_pinyin([row[0] for row in lines]) | |
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0]) | |
def get_template_names(plain=False): | |
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"]) | |
def get_template_content(templates, selection, original_system_prompt): | |
try: | |
return templates[selection] | |
except: | |
return original_system_prompt | |
def reset_state(): | |
return [], [] | |
def compose_system(system_prompt): | |
return {"role": "system", "content": system_prompt} | |
def compose_user(user_input): | |
return {"role": "user", "content": user_input} | |
def reset_textbox(): | |
return gr.update(value='') | |