Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
"""Contains all of the components that can be used with Gradio Interface / Blocks. | |
Along with the docs for each component, you can find the names of example demos that use | |
each component. These demos are located in the `demo` directory.""" | |
from __future__ import annotations | |
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type | |
import json | |
import gradio as gr | |
# import openai | |
import os | |
import traceback | |
import requests | |
# import markdown | |
import csv | |
import mdtex2html | |
from pypinyin import lazy_pinyin | |
from presets import * | |
if TYPE_CHECKING: | |
from typing import TypedDict | |
class DataframeData(TypedDict): | |
headers: List[str] | |
data: List[List[str | int | bool]] | |
initial_prompt = "You are a helpful assistant." | |
API_URL = "https://api.openai.com/v1/chat/completions" | |
HISTORY_DIR = "history" | |
TEMPLATES_DIR = "templates" | |
def postprocess( | |
self, y: List[Tuple[str | None, str | None]] | |
) -> List[Tuple[str | None, str | None]]: | |
""" | |
Parameters: | |
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. | |
Returns: | |
List of tuples representing the message and response. Each message and response will be a string of HTML. | |
""" | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
# None if message is None else markdown.markdown(message), | |
# None if response is None else markdown.markdown(response), | |
None if message is None else mdtex2html.convert((message)), | |
None if response is None else mdtex2html.convert(response), | |
) | |
return y | |
def parse_text(text): | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split('`') | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f'<br></code></pre>' | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", "\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>"+line | |
text = "".join(lines) | |
return text | |
def construct_text(role, text): | |
return {"role": role, "content": text} | |
def construct_user(text): | |
return construct_text("user", text) | |
def construct_system(text): | |
return construct_text("system", text) | |
def construct_assistant(text): | |
return construct_text("assistant", text) | |
def construct_token_message(token, stream=False): | |
extra = "【仅包含回答的计数】 " if stream else "" | |
return f"{extra}Token 计数: {token}" | |
def get_response(openai_api_key, system_prompt, history, temperature, top_p, stream): | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}" | |
} | |
history = [construct_system(system_prompt), *history] | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": history, # [{"role": "user", "content": f"{inputs}"}], | |
"temperature": temperature, # 1.0, | |
"top_p": top_p, # 1.0, | |
"n": 1, | |
"stream": stream, | |
"presence_penalty": 0, | |
"frequency_penalty": 0, | |
} | |
if stream: | |
timeout = timeout_streaming | |
else: | |
timeout = timeout_all | |
response = requests.post(API_URL, headers=headers, json=payload, stream=True, timeout=timeout) | |
return response | |
def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, previous_token_count, top_p, temperature): | |
def get_return_value(): | |
return chatbot, history, status_text, [*previous_token_count, token_counter] | |
token_counter = 0 | |
partial_words = "" | |
counter = 0 | |
status_text = "OK" | |
history.append(construct_user(inputs)) | |
try: | |
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, True) | |
except requests.exceptions.ConnectTimeout: | |
status_text = standard_error_msg + error_retrieve_prompt | |
yield get_return_value() | |
return | |
chatbot.append((parse_text(inputs), "")) | |
yield get_return_value() | |
for chunk in response.iter_lines(): | |
if counter == 0: | |
counter += 1 | |
continue | |
counter += 1 | |
# check whether each line is non-empty | |
if chunk: | |
chunk = chunk.decode() | |
chunklength = len(chunk) | |
chunk = json.loads(chunk[6:]) | |
# decode each line as response data is in bytes | |
if chunklength > 6 and "delta" in chunk['choices'][0]: | |
finish_reason = chunk['choices'][0]['finish_reason'] | |
status_text = construct_token_message(sum(previous_token_count)+token_counter, stream=True) | |
if finish_reason == "stop": | |
yield get_return_value() | |
break | |
partial_words = partial_words + chunk['choices'][0]["delta"]["content"] | |
if token_counter == 0: | |
history.append(construct_assistant(" " + partial_words)) | |
else: | |
history[-1] = construct_assistant(partial_words) | |
chatbot[-1] = (parse_text(inputs), parse_text(partial_words)) | |
token_counter += 1 | |
yield get_return_value() | |
def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, previous_token_count, top_p, temperature): | |
history.append(construct_user(inputs)) | |
try: | |
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, False) | |
except requests.exceptions.ConnectTimeout: | |
status_text = standard_error_msg + error_retrieve_prompt | |
return chatbot, history, status_text, previous_token_count | |
response = json.loads(response.text) | |
content = response["choices"][0]["message"]["content"] | |
history.append(construct_assistant(content)) | |
chatbot.append((parse_text(inputs), parse_text(content))) | |
total_token_count = response["usage"]["total_tokens"] | |
previous_token_count.append(total_token_count - sum(previous_token_count)) | |
status_text = construct_token_message(total_token_count) | |
return chatbot, history, status_text, previous_token_count | |
def predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=False, should_check_token_count = True): # repetition_penalty, top_k | |
if stream: | |
iter = stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature) | |
for chatbot, history, status_text, token_count in iter: | |
yield chatbot, history, status_text, token_count | |
else: | |
chatbot, history, status_text, token_count = predict_all(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature) | |
yield chatbot, history, status_text, token_count | |
if stream: | |
max_token = max_token_streaming | |
else: | |
max_token = max_token_all | |
if sum(token_count) > max_token and should_check_token_count: | |
iter = reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, hidden=True) | |
for chatbot, history, status_text, token_count in iter: | |
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}" | |
yield chatbot, history, status_text, token_count | |
def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False): | |
if len(history) == 0: | |
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count | |
return | |
history.pop() | |
inputs = history.pop()["content"] | |
token_count.pop() | |
iter = predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=stream) | |
for x in iter: | |
yield x | |
def reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, hidden=False): | |
iter = predict(openai_api_key, system_prompt, history, summarize_prompt, chatbot, token_count, top_p, temperature, stream=stream, should_check_token_count=False) | |
for chatbot, history, status_text, previous_token_count in iter: | |
history = history[-2:] | |
token_count = previous_token_count[-1:] | |
if hidden: | |
chatbot.pop() | |
yield chatbot, history, construct_token_message(sum(token_count), stream=stream), token_count | |
def delete_last_conversation(chatbot, history, previous_token_count, streaming): | |
if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]: | |
chatbot.pop() | |
return chatbot, history | |
if len(history) > 0: | |
history.pop() | |
history.pop() | |
if len(chatbot) > 0: | |
chatbot.pop() | |
if len(previous_token_count) > 0: | |
previous_token_count.pop() | |
return chatbot, history, previous_token_count, construct_token_message(sum(previous_token_count), streaming) | |
def save_chat_history(filename, system, history, chatbot): | |
if filename == "": | |
return | |
if not filename.endswith(".json"): | |
filename += ".json" | |
os.makedirs(HISTORY_DIR, exist_ok=True) | |
json_s = {"system": system, "history": history, "chatbot": chatbot} | |
print(json_s) | |
with open(os.path.join(HISTORY_DIR, filename), "w") as f: | |
json.dump(json_s, f) | |
def load_chat_history(filename, system, history, chatbot): | |
try: | |
with open(os.path.join(HISTORY_DIR, filename), "r") as f: | |
json_s = json.load(f) | |
if type(json_s["history"]) == list: | |
new_history = [] | |
for index, item in enumerate(json_s["history"]): | |
if index % 2 == 0: | |
new_history.append(construct_user(item)) | |
else: | |
new_history.append(construct_assistant(item)) | |
json_s["history"] = new_history | |
return filename, json_s["system"], json_s["history"], json_s["chatbot"] | |
except FileNotFoundError: | |
print("File not found.") | |
return filename, system, history, chatbot | |
def sorted_by_pinyin(list): | |
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0]) | |
def get_file_names(dir, plain=False, filetypes=[".json"]): | |
# find all json files in the current directory and return their names | |
files = [] | |
try: | |
for type in filetypes: | |
files += [f for f in os.listdir(dir) if f.endswith(type)] | |
except FileNotFoundError: | |
files = [] | |
files = sorted_by_pinyin(files) | |
if files == []: | |
files = [""] | |
if plain: | |
return files | |
else: | |
return gr.Dropdown.update(choices=files) | |
def get_history_names(plain=False): | |
return get_file_names(HISTORY_DIR, plain) | |
def load_template(filename, mode=0): | |
lines = [] | |
print("Loading template...") | |
if filename.endswith(".json"): | |
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as f: | |
lines = json.load(f) | |
lines = [[i["act"], i["prompt"]] for i in lines] | |
else: | |
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile: | |
reader = csv.reader(csvfile) | |
lines = list(reader) | |
lines = lines[1:] | |
if mode == 1: | |
return sorted_by_pinyin([row[0] for row in lines]) | |
elif mode == 2: | |
return {row[0]:row[1] for row in lines} | |
else: | |
choices = sorted_by_pinyin([row[0] for row in lines]) | |
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0]) | |
def get_template_names(plain=False): | |
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"]) | |
def get_template_content(templates, selection, original_system_prompt): | |
try: | |
return templates[selection] | |
except: | |
return original_system_prompt | |
def reset_state(): | |
return [], [], [], construct_token_message(0) | |
def compose_system(system_prompt): | |
return {"role": "system", "content": system_prompt} | |
def compose_user(user_input): | |
return {"role": "user", "content": user_input} | |
def reset_textbox(): | |
return gr.update(value='') | |