Spaces:
Build error
Build error
File size: 10,199 Bytes
1865436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import numpy as np
import gradio as gr
import cv2
import os
import shutil
import re
import torch
import csv
import time
from src.sts.demo.sts import handle_sts
from src.ir.ir import handle_ir
from src.ir.src.models.tc_classifier import TCClassifier
from src.tracker.signboard_track import SignboardTracker
from omegaconf import DictConfig
from hydra import compose, initialize
signboardTracker = SignboardTracker()
tracking_result_dir = ""
output_track_format = "mp4v"
output_track = ""
output_sts = ""
video_dir = ""
vd_dir = ""
labeling_dir = ""
frame_out = {}
rs = {}
results = []
# with initialize(version_base=None, config_path="src/ir/configs", job_name="ir"):
# config = compose(config_name="test")
# config: DictConfig
# model_ir = TCClassifier(config.model.train.model_name,
# config.model.train.n_classes,
# config.model.train.lr,
# config.model.train.scheduler_type,
# config.model.train.max_steps,
# config.model.train.weight_decay,
# config.model.train.classifier_dropout,
# config.model.train.mixout,
# config.model.train.freeze_encoder)
# model_ir = model_ir.load_from_checkpoint(checkpoint_path=config.ckpt_path, map_location=torch.device("cuda"))
def create_dir(list_dir_path):
for dir_path in list_dir_path:
if not os.path.isdir(dir_path):
os.makedirs(dir_path)
def get_meta_from_video(input_video):
if input_video is not None:
video_name = os.path.basename(input_video).split('.')[0]
global video_dir
video_dir = os.path.join("static/videos/", f"{video_name}")
global vd_dir
vd_dir = os.path.join(video_dir, os.path.basename(input_video))
global output_track
output_track = os.path.join(video_dir,"original")
global tracking_result_dir
tracking_result_dir = os.path.join(video_dir,"track/cropped")
global output_sts
output_sts = os.path.join(video_dir,"track/sts")
global labeling_dir
labeling_dir = os.path.join(video_dir,"track/labeling")
if os.path.isdir(video_dir):
return None
else:
create_dir([output_track, video_dir, os.path.join(video_dir, "track/segment"), output_sts, tracking_result_dir, labeling_dir])
# initialize the video stream
video_cap = cv2.VideoCapture(input_video)
# grab the width, height, and fps of the frames in the video stream.
frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(video_cap.get(cv2.CAP_PROP_FPS))
#tổng Fps
# total_frames = int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT))
# print(total_frames)
# # Tính tổng số giây trong video
# total_seconds = total_frames / video_cap.get(cv2.CAP_PROP_FPS)
# print(total_seconds)
# initialize the FourCC and a video writer object
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
output = cv2.VideoWriter(vd_dir, fourcc, fps, (frame_width, frame_height))
while True:
success, frame = video_cap.read()
# write the frame to the output file
if success == True:
output.write(frame)
else:
break
# print(fps)
# return gr.Slider(1, fps, value=4, label="FPS",step=1, info="Choose between 1 and {fps}", interactive=True)
return gr.Textbox(value=fps)
def get_signboard(evt: gr.SelectData):
name_fr = int(evt.index) + 1
ids_dir = tracking_result_dir
all_ids = os.listdir(ids_dir)
gallery=[]
for i in all_ids:
fr_id = str(name_fr)
al = re.search("[\d]*_"+fr_id+".png", i)
if al:
id_dir = os.path.join(ids_dir, i)
gallery.append(id_dir)
gallery = sorted(gallery)
return gallery, name_fr
def tracking(fps_target):
start = time.time()
fps_target = int(fps_target)
global results
results = signboardTracker.inference_signboard(fps_target, vd_dir, output_track, output_track_format, tracking_result_dir)[0]
# print("result", results)
fd = []
global frame_out
list_id = []
with open(os.path.join(video_dir, "track/label.csv"), 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["Signboard", "Frame", "Text"])
for frame, values in results.items():
frame_dir = os.path.join(output_track, f"{frame}.jpg")
# segment = os.path.join(video_dir,"segment/" + f"{frame}.jpg")
list_boxs = []
full = []
list_id_tmp = []
# print("values", values)
for value in values:
list_boxs.append(value['box'])
list_id_tmp.append(value['id'])
_, dict_rec_sign_out = handle_sts(frame_dir, labeling_dir, list_boxs, list_id_tmp)
# predicted = handle_ir(frame_dir, dict_rec_sign_out, os.path.join(video_dir, "ir"))
# print(predicted)
# fd.append(frame_dir)
# frame_out[frame] = full
list_id.extend(list_id_tmp)
list_id = list(set(list_id))
# print(list_id)
print(time.time()-start)
return gr.Dropdown(label="signboard",choices=list_id, interactive=True)
def get_select_index(img_id, evt: gr.SelectData):
ids_dir = tracking_result_dir
# print(ids_dir)
all_ids = os.listdir(ids_dir)
gallery = []
for i in all_ids:
fr_id = str(img_id)
al = re.search("[\d]*_"+fr_id+".png", i)
if al:
id_dir = os.path.join(ids_dir, i)
gallery.append(id_dir)
gallery = sorted(gallery)
gallery_id=[]
id_name = gallery[evt.index]
id = os.path.basename(id_name).split(".")[0].split("_")[0]
for i in all_ids:
al = re.search("^" +id + "_[\d]*.png", i)
if al:
id_dir = os.path.join(ids_dir, i)
gallery_id.append(id_dir)
gallery_id = sorted(gallery_id)
return gallery_id
id_glb = None
def select_id(evt: gr.SelectData):
choice=[]
global id_glb
id_glb = evt.value
for key, values in results.items():
for value in values:
if value['id'] == evt.value:
choice.append(int(key))
return gr.Dropdown(label="frame", choices=choice, interactive=True)
import pandas as pd
frame_glb = None
def select_frame(evt: gr.SelectData):
full_img = os.path.join(output_track, str(evt.value) + ".jpg")
crop_img = os.path.join(tracking_result_dir, str(id_glb) + "_" + str(evt.value) + ".png")
global frame_glb
frame_glb = evt.value
data = pd.read_csv(os.path.join(labeling_dir, str(id_glb) + "_" + str(frame_glb) + '.csv'), header=0)
return full_img, crop_img, data
def get_data(dtfr):
print(dtfr)
# df = pd.read_csv(os.path.join(video_dir, "track/label.csv"))
# for i, row in df.iterrows():
# if str(row["Signboard"]) == str(id_tmp) and str(row["Frame"]) == str(frame_tmp):
# # print(row["Text"])
# df_new = df.replace(str(row["Text"]), str(labeling))
# print(df_new)
dtfr.to_csv(os.path.join(labeling_dir, str(id_glb) + "_" + str(frame_glb) + '.csv'), index=False, header=True)
return
def seg_track_app():
##########################################################
###################### Front-end ########################
##########################################################
with gr.Blocks(css=".gradio-container {background-color: white}") as demo:
gr.Markdown(
'''
<div style="text-align:center;">
<span style="font-size:3em; font-weight:bold;">POI Engineeing</span>
</div>
'''
)
with gr.Row():
# video input
with gr.Column(scale=0.2):
tab_video_input = gr.Row(label="Video type input")
with tab_video_input:
input_video = gr.Video(label='Input video')
tab_everything = gr.Row(label="Tracking")
with tab_everything:
with gr.Row():
seg_signboard = gr.Button(value="Tracking", interactive=True)
all_info = gr.Row(label="Information about video")
with all_info:
with gr.Row():
text = gr.Textbox(label="Fps")
check_fps = gr.Textbox(label="Choose fps for output", interactive=True)
with gr.Column(scale=1):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column(scale=1):
id_drop = gr.Dropdown(label="Signboards",choices=[])
with gr.Column(scale=1):
fr_drop = gr.Dropdown(label="Frames",choices=[])
full_img = gr.Image(label="Full Image")
with gr.Column(scale=1):
crop_img = gr.Image(label="Cropped Image")
with gr.Row():
dtfr = gr.Dataframe(headers=["Tag", "Value"], datatype=["str", "str"], interactive=True)
with gr.Row():
submit = gr.Button(value="Submit", interactive=True)
##########################################################
###################### back-end #########################
##########################################################
input_video.change(
fn=get_meta_from_video,
inputs=input_video,
outputs=text
)
seg_signboard.click(
fn=tracking,
inputs=check_fps,
outputs=id_drop
)
id_drop.select(select_id, None, fr_drop)
fr_drop.select(select_frame, None, [full_img,crop_img, dtfr])
submit.click(get_data, dtfr, None)
demo.queue(concurrency_count=1)
demo.launch(debug=True, enable_queue=True, share=True)
if __name__ == "__main__":
seg_track_app()
|