# # Modified by Peize Sun, Rufeng Zhang # Contact: {sunpeize, cxrfzhang}@foxmail.com # # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ SparseRCNN Training Script. This script is a simplified version of the training script in detectron2/tools. """ import os import itertools import time from typing import Any, Dict, List, Set import torch import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog, build_detection_train_loader from detectron2.engine import AutogradProfiler, DefaultTrainer, default_argument_parser, default_setup, launch from detectron2.evaluation import COCOEvaluator, verify_results, TextEvaluator from detectron2.solver.build import maybe_add_gradient_clipping from swints import SWINTSDatasetMapper, add_SWINTS_config class Trainer(DefaultTrainer): # """ # Extension of the Trainer class adapted to SparseRCNN. # """ @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): """ Create evaluator(s) for a given dataset. This uses the special metadata "evaluator_type" associated with each builtin dataset. For your own dataset, you can simply create an evaluator manually in your script and do not have to worry about the hacky if-else logic here. """ if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") return TextEvaluator(dataset_name, cfg, True, output_folder) @classmethod def build_train_loader(cls, cfg): mapper = SWINTSDatasetMapper(cfg, is_train=True) return build_detection_train_loader(cfg, mapper=mapper) @classmethod def build_optimizer(cls, cfg, model): params: List[Dict[str, Any]] = [] memo: Set[torch.nn.parameter.Parameter] = set() for key, value in model.named_parameters(recurse=True): if not value.requires_grad: continue # Avoid duplicating parameters if value in memo: continue memo.add(value) lr = cfg.SOLVER.BASE_LR weight_decay = cfg.SOLVER.WEIGHT_DECAY if "backbone" in key: lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] def maybe_add_full_model_gradient_clipping(optim): # optim: the optimizer class # detectron2 doesn't have full model gradient clipping now clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE enable = ( cfg.SOLVER.CLIP_GRADIENTS.ENABLED and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" and clip_norm_val > 0.0 ) class FullModelGradientClippingOptimizer(optim): def step(self, closure=None): all_params = itertools.chain(*[x["params"] for x in self.param_groups]) torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) super().step(closure=closure) return FullModelGradientClippingOptimizer if enable else optim optimizer_type = cfg.SOLVER.OPTIMIZER if optimizer_type == "SGD": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)( params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM ) elif optimizer_type == "ADAMW": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( params, cfg.SOLVER.BASE_LR ) else: raise NotImplementedError(f"no optimizer type {optimizer_type}") if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": optimizer = maybe_add_gradient_clipping(cfg, optimizer) return optimizer def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_SWINTS_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(cfg.MODEL.WEIGHTS, resume=args.resume) res = Trainer.test(cfg, model) if comm.is_main_process(): verify_results(cfg, res) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )