Spaces:
Sleeping
Sleeping
File size: 5,550 Bytes
a4c3bcc 47ed12b a4c3bcc 47ed12b a4c3bcc 47ed12b a4c3bcc 47ed12b 985ad3e 47ed12b 76bb75b 47ed12b 76bb75b 47ed12b 985ad3e 47ed12b 76bb75b 47ed12b a4c3bcc 47ed12b 985ad3e 47ed12b 985ad3e 47ed12b 985ad3e 47ed12b 985ad3e 47ed12b 985ad3e 47ed12b a4c3bcc 47ed12b a4c3bcc 47ed12b a4c3bcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
# Custom CSS for the chat interface
def local_css():
st.markdown("""
<style>
.chat-container {
padding: 10px;
border-radius: 5px;
margin-bottom: 10px;
display: flex;
flex-direction: column;
}
.user-message {
background-color: #e3f2fd;
padding: 10px;
border-radius: 15px;
margin: 5px;
margin-left: 20%;
margin-right: 5px;
align-self: flex-end;
max-width: 70%;
}
.bot-message {
background-color: #f5f5f5;
padding: 10px;
border-radius: 15px;
margin: 5px;
margin-right: 20%;
margin-left: 5px;
align-self: flex-start;
max-width: 70%;
}
.thinking-animation {
display: flex;
align-items: center;
margin-left: 10px;
}
.dot {
width: 8px;
height: 8px;
margin: 0 3px;
background: #888;
border-radius: 50%;
animation: bounce 0.8s infinite;
}
.dot:nth-child(2) { animation-delay: 0.2s; }
.dot:nth-child(3) { animation-delay: 0.4s; }
@keyframes bounce {
0%, 100% { transform: translateY(0); }
50% { transform: translateY(-5px); }
}
</style>
""", unsafe_allow_html=True)
# Load model and tokenizer
@st.cache_resource
def load_model():
# Using VietAI's Vietnamese GPT model
model_name = "tamgrnguyen/Gemma-2-2b-it-Vietnamese-Aesthetic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return model, tokenizer
def generate_response(prompt, model, tokenizer, max_length=100):
# Prepare input
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
# Generate response
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=0.7,
top_k=50,
top_p=0.95,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
attention_mask=inputs.attention_mask
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove the input prompt from the response
response = response[len(prompt):].strip()
return response
def init_session_state():
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'thinking' not in st.session_state:
st.session_state.thinking = False
def display_chat_history():
for message in st.session_state.messages:
if message['role'] == 'user':
st.markdown(f'<div class="user-message">{message["content"]}</div>', unsafe_allow_html=True)
else:
st.markdown(f'<div class="bot-message">{message["content"]}</div>', unsafe_allow_html=True)
def main():
st.set_page_config(
page_title="AI Chatbot Tiếng Việt",
page_icon="🤖",
layout="wide"
)
local_css()
init_session_state()
# Load model
model, tokenizer = load_model()
# Chat interface
st.title("AI Chatbot Tiếng Việt 🤖")
st.markdown("Xin chào! Tôi là trợ lý AI có thể trò chuyện bằng tiếng Việt. Hãy hỏi tôi bất cứ điều gì!")
# Chat history container
chat_container = st.container()
# Input container
with st.container():
col1, col2 = st.columns([6, 1])
with col1:
user_input = st.text_input(
"Nhập tin nhắn của bạn...",
key="user_input",
label_visibility="hidden"
)
with col2:
send_button = st.button("Gửi")
if user_input and send_button:
# Add user message
st.session_state.messages.append({"role": "user", "content": user_input})
# Show thinking animation
st.session_state.thinking = True
# Prepare conversation history
conversation_history = "\n".join([
f"{'User: ' if msg['role'] == 'user' else 'Assistant: '}{msg['content']}"
for msg in st.session_state.messages[-3:] # Last 3 messages for context
])
# Generate response
prompt = f"{conversation_history}\nAssistant:"
bot_response = generate_response(prompt, model, tokenizer)
# Add bot response
time.sleep(0.5) # Brief delay for natural feeling
st.session_state.messages.append({"role": "assistant", "content": bot_response})
st.session_state.thinking = False
# Clear input and rerun
st.rerun()
# Display chat history
with chat_container:
display_chat_history()
if st.session_state.thinking:
st.markdown("""
<div class="thinking-animation">
<div class="dot"></div>
<div class="dot"></div>
<div class="dot"></div>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |