Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -67,7 +67,7 @@ class VietnameseChatbot:
|
|
67 |
]
|
68 |
|
69 |
@st.cache_data
|
70 |
-
def _compute_embeddings(
|
71 |
"""
|
72 |
Pre-compute embeddings for conversation queries
|
73 |
Cached to avoid recomputing on every run
|
@@ -89,15 +89,10 @@ class VietnameseChatbot:
|
|
89 |
except Exception as e:
|
90 |
print(f"Embedding error: {e}")
|
91 |
return None
|
92 |
-
|
93 |
-
# Import these arguments to make the function self-contained
|
94 |
-
from transformers import AutoTokenizer, AutoModel
|
95 |
-
tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-small')
|
96 |
-
model = AutoModel.from_pretrained('intfloat/multilingual-e5-small', torch_dtype=torch.float16)
|
97 |
-
|
98 |
embeddings = []
|
99 |
-
for
|
100 |
-
embedding = embed_single_text(
|
101 |
if embedding is not None:
|
102 |
embeddings.append(embedding)
|
103 |
return np.array(embeddings)
|
|
|
67 |
]
|
68 |
|
69 |
@st.cache_data
|
70 |
+
def _compute_embeddings(self, _queries=None): # Add _queries parameter with underscore
|
71 |
"""
|
72 |
Pre-compute embeddings for conversation queries
|
73 |
Cached to avoid recomputing on every run
|
|
|
89 |
except Exception as e:
|
90 |
print(f"Embedding error: {e}")
|
91 |
return None
|
92 |
+
|
|
|
|
|
|
|
|
|
|
|
93 |
embeddings = []
|
94 |
+
for conversation in self.conversation_data: # Use self.conversation_data instead of queries
|
95 |
+
embedding = embed_single_text(conversation['query'], self.tokenizer, self.model) # Use self.tokenizer and self.model
|
96 |
if embedding is not None:
|
97 |
embeddings.append(embedding)
|
98 |
return np.array(embeddings)
|