import streamlit as st import torch from PIL import Image from transformers import AutoProcessor, AutoModelForImageTextToText # Set page configuration st.set_page_config(page_title="Llama 3.2 Vision Model", page_icon="???") # Title and description st.title("Llama 3.2 Vision Model Inference") st.write("Upload an image and provide a prompt to get model insights!") # Load model and processor (consider caching to improve performance) @st.cache_resource def load_model(): try: processor = AutoProcessor.from_pretrained("meta-llama/Llama-3.2-90B-Vision-Instruct") model = AutoModelForImageTextToText.from_pretrained("meta-llama/Llama-3.2-90B-Vision-Instruct") return processor, model except Exception as e: st.error(f"Error loading model: {e}") return None, None # Inference function def generate_response(image, prompt): processor, model = load_model() if not processor or not model: return "Model could not be loaded." try: # Prepare inputs inputs = processor(images=image, text=prompt, return_tensors="pt") # Generate response with torch.no_grad(): outputs = model.generate(**inputs) # Decode the response response = processor.decode(outputs[0], skip_special_tokens=True) return response except Exception as e: st.error(f"Error during inference: {e}") return "An error occurred during image processing." # Sidebar for user inputs st.sidebar.header("Image and Prompt") # Image uploader uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) # Prompt input prompt = st.sidebar.text_input("Enter your prompt:", placeholder="Describe what you want to know about the image") # Main content area if uploaded_file is not None: # Display uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) # Generate button if st.sidebar.button("Generate Response"): if prompt: # Show loading spinner with st.spinner("Generating response..."): response = generate_response(image, prompt) # Display response st.subheader("Model Response") st.write(response) else: st.warning("Please enter a prompt!") else: st.info("Upload an image and enter a prompt to get started!") # Additional error handling and information st.sidebar.markdown("---") st.sidebar.info("Note: Model performance depends on image quality and prompt specificity.")