Spaces:
Sleeping
Sleeping
Create app.bak
Browse files
app.bak
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
from bertopic import BERTopic
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
import pandas as pd
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
from datetime import datetime
|
10 |
+
import json
|
11 |
+
from collections import deque
|
12 |
+
from datasets import load_dataset
|
13 |
+
|
14 |
+
class BERTopicChatbot:
|
15 |
+
|
16 |
+
#Initialize chatbot with a Hugging Face dataset
|
17 |
+
#dataset_name: name of the dataset on Hugging Face (e.g., 'vietnam/legal')
|
18 |
+
#text_column: name of the column containing the text data
|
19 |
+
#split: which split of the dataset to use ('train', 'test', 'validation')
|
20 |
+
#max_samples: maximum number of samples to use (to manage memory)
|
21 |
+
|
22 |
+
def __init__(self, dataset_name, text_column, split="train", max_samples=10000):
|
23 |
+
# Initialize BERT sentence transformer
|
24 |
+
self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
25 |
+
# Load dataset from Hugging Face
|
26 |
+
try:
|
27 |
+
dataset = load_dataset(dataset_name, split=split)
|
28 |
+
# Convert to pandas DataFrame and sample if necessary
|
29 |
+
if len(dataset) > max_samples:
|
30 |
+
dataset = dataset.shuffle(seed=42).select(range(max_samples))
|
31 |
+
|
32 |
+
self.df = dataset.to_pandas()
|
33 |
+
|
34 |
+
# Ensure text column exists
|
35 |
+
if text_column not in self.df.columns:
|
36 |
+
raise ValueError(f"Column '{text_column}' not found in dataset. Available columns: {self.df.columns}")
|
37 |
+
|
38 |
+
self.documents = self.df[text_column].tolist()
|
39 |
+
|
40 |
+
# Create and train BERTopic model
|
41 |
+
self.topic_model = BERTopic(embedding_model=self.sentence_model)
|
42 |
+
self.topics, self.probs = self.topic_model.fit_transform(self.documents)
|
43 |
+
|
44 |
+
# Create document embeddings for similarity search
|
45 |
+
self.doc_embeddings = self.sentence_model.encode(self.documents)
|
46 |
+
|
47 |
+
# Initialize metrics storage
|
48 |
+
self.metrics_history = {
|
49 |
+
'similarities': deque(maxlen=100),
|
50 |
+
'response_times': deque(maxlen=100),
|
51 |
+
'token_counts': deque(maxlen=100),
|
52 |
+
'topics_accessed': {}
|
53 |
+
}
|
54 |
+
|
55 |
+
# Store dataset info
|
56 |
+
self.dataset_info = {
|
57 |
+
'name': dataset_name,
|
58 |
+
'split': split,
|
59 |
+
'total_documents': len(self.documents),
|
60 |
+
'topics_found': len(set(self.topics))
|
61 |
+
}
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
st.error(f"Error loading dataset: {str(e)}")
|
65 |
+
raise
|
66 |
+
|
67 |
+
def get_metrics_visualizations(self):
|
68 |
+
"""Generate visualizations for chatbot metrics"""
|
69 |
+
# Similarity trend
|
70 |
+
fig_similarity = go.Figure()
|
71 |
+
fig_similarity.add_trace(go.Scatter(
|
72 |
+
y=list(self.metrics_history['similarities']),
|
73 |
+
mode='lines+markers',
|
74 |
+
name='Similarity Score'
|
75 |
+
))
|
76 |
+
fig_similarity.update_layout(
|
77 |
+
title='Response Similarity Trend',
|
78 |
+
yaxis_title='Similarity Score',
|
79 |
+
xaxis_title='Query Number'
|
80 |
+
)
|
81 |
+
|
82 |
+
# Response time trend
|
83 |
+
fig_response_time = go.Figure()
|
84 |
+
fig_response_time.add_trace(go.Scatter(
|
85 |
+
y=list(self.metrics_history['response_times']),
|
86 |
+
mode='lines+markers',
|
87 |
+
name='Response Time'
|
88 |
+
))
|
89 |
+
fig_response_time.update_layout(
|
90 |
+
title='Response Time Trend',
|
91 |
+
yaxis_title='Time (seconds)',
|
92 |
+
xaxis_title='Query Number'
|
93 |
+
)
|
94 |
+
|
95 |
+
# Token usage trend
|
96 |
+
fig_tokens = go.Figure()
|
97 |
+
fig_tokens.add_trace(go.Scatter(
|
98 |
+
y=list(self.metrics_history['token_counts']),
|
99 |
+
mode='lines+markers',
|
100 |
+
name='Token Count'
|
101 |
+
))
|
102 |
+
fig_tokens.update_layout(
|
103 |
+
title='Token Usage Trend',
|
104 |
+
yaxis_title='Number of Tokens',
|
105 |
+
xaxis_title='Query Number'
|
106 |
+
)
|
107 |
+
|
108 |
+
# Topics accessed pie chart
|
109 |
+
labels = list(self.metrics_history['topics_accessed'].keys())
|
110 |
+
values = list(self.metrics_history['topics_accessed'].values())
|
111 |
+
fig_topics = go.Figure(data=[go.Pie(labels=labels, values=values)])
|
112 |
+
fig_topics.update_layout(title='Topics Accessed Distribution')
|
113 |
+
|
114 |
+
# Make all figures responsive
|
115 |
+
for fig in [fig_similarity, fig_response_time, fig_tokens, fig_topics]:
|
116 |
+
fig.update_layout(
|
117 |
+
autosize=True,
|
118 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
119 |
+
height=300
|
120 |
+
)
|
121 |
+
|
122 |
+
return fig_similarity, fig_response_time, fig_tokens, fig_topics
|
123 |
+
|
124 |
+
def get_most_similar_document(self, query, top_k=3):
|
125 |
+
# Encode the query
|
126 |
+
query_embedding = self.sentence_model.encode([query])[0]
|
127 |
+
|
128 |
+
# Calculate similarities
|
129 |
+
similarities = cosine_similarity([query_embedding], self.doc_embeddings)[0]
|
130 |
+
|
131 |
+
# Get top k most similar documents
|
132 |
+
top_indices = similarities.argsort()[-top_k:][::-1]
|
133 |
+
|
134 |
+
return [self.documents[i] for i in top_indices], similarities[top_indices]
|
135 |
+
|
136 |
+
def get_response(self, user_query):
|
137 |
+
try:
|
138 |
+
start_time = datetime.now()
|
139 |
+
|
140 |
+
# Get most similar documents
|
141 |
+
similar_docs, similarities = self.get_most_similar_document(user_query)
|
142 |
+
|
143 |
+
# Get topic for the query
|
144 |
+
query_topic, _ = self.topic_model.transform([user_query])
|
145 |
+
|
146 |
+
# Track topic access
|
147 |
+
topic_id = str(query_topic[0])
|
148 |
+
self.metrics_history['topics_accessed'][topic_id] = \
|
149 |
+
self.metrics_history['topics_accessed'].get(topic_id, 0) + 1
|
150 |
+
|
151 |
+
# If similarity is too low, return a default response
|
152 |
+
if max(similarities) < 0.5:
|
153 |
+
response = "Xin lỗi, tôi không có đủ thông tin để trả lời câu hỏi này một cách chính xác."
|
154 |
+
else:
|
155 |
+
response = similar_docs[0]
|
156 |
+
|
157 |
+
# Track metrics
|
158 |
+
end_time = datetime.now()
|
159 |
+
self.metrics_history['similarities'].append(float(max(similarities)))
|
160 |
+
self.metrics_history['response_times'].append((end_time - start_time).total_seconds())
|
161 |
+
self.metrics_history['token_counts'].append(len(response.split()))
|
162 |
+
|
163 |
+
metrics = {
|
164 |
+
'similarity': float(max(similarities)),
|
165 |
+
'response_time': (end_time - start_time).total_seconds(),
|
166 |
+
'tokens': len(response.split()),
|
167 |
+
'topic': topic_id
|
168 |
+
}
|
169 |
+
|
170 |
+
return response, metrics
|
171 |
+
|
172 |
+
except Exception as e:
|
173 |
+
return f"Error processing query: {str(e)}", {'error': str(e)}
|
174 |
+
|
175 |
+
def get_dataset_info(self):
|
176 |
+
#Return information about the loaded dataset and metrics
|
177 |
+
try:
|
178 |
+
return {
|
179 |
+
'dataset_info': self.dataset_info,
|
180 |
+
'metrics': {
|
181 |
+
'avg_similarity': np.mean(list(self.metrics_history['similarities'])) if self.metrics_history['similarities'] else 0,
|
182 |
+
'avg_response_time': np.mean(list(self.metrics_history['response_times'])) if self.metrics_history['response_times'] else 0,
|
183 |
+
'total_tokens': sum(self.metrics_history['token_counts']),
|
184 |
+
'topics_accessed': self.metrics_history['topics_accessed']
|
185 |
+
}
|
186 |
+
}
|
187 |
+
except Exception as e:
|
188 |
+
return {
|
189 |
+
'error': str(e),
|
190 |
+
'dataset_info': None,
|
191 |
+
'metrics': None
|
192 |
+
}
|
193 |
+
|
194 |
+
@st.cache_resource
|
195 |
+
def initialize_chatbot(dataset_name, text_column, split="train", max_samples=10000):
|
196 |
+
return BERTopicChatbot(dataset_name, text_column, split, max_samples)
|
197 |
+
|
198 |
+
def main():
|
199 |
+
st.title("🤖 Trợ Lý AI - BERTopic")
|
200 |
+
st.caption("Trò chuyện với chúng mình nhé!")
|
201 |
+
|
202 |
+
# Dataset selection sidebar
|
203 |
+
with st.sidebar:
|
204 |
+
st.header("Dataset Configuration")
|
205 |
+
dataset_name = st.text_input(
|
206 |
+
"Hugging Face Dataset Name",
|
207 |
+
value="Kanakmi/mental-disorders",
|
208 |
+
help="Enter the name of a dataset from Hugging Face (e.g., 'Kanakmi/mental-disorders')"
|
209 |
+
)
|
210 |
+
text_column = st.text_input(
|
211 |
+
"Text Column Name",
|
212 |
+
value="text",
|
213 |
+
help="Enter the name of the column containing the text data"
|
214 |
+
)
|
215 |
+
split = st.selectbox(
|
216 |
+
"Dataset Split",
|
217 |
+
options=["train", "test", "validation"],
|
218 |
+
index=0
|
219 |
+
)
|
220 |
+
max_samples = st.number_input(
|
221 |
+
"Maximum Samples",
|
222 |
+
min_value=100,
|
223 |
+
max_value=100000,
|
224 |
+
value=10000,
|
225 |
+
step=1000,
|
226 |
+
help="Maximum number of samples to load from the dataset"
|
227 |
+
)
|
228 |
+
|
229 |
+
if st.button("Load Dataset"):
|
230 |
+
with st.spinner("Loading dataset and initializing model..."):
|
231 |
+
try:
|
232 |
+
st.session_state.chatbot = initialize_chatbot(
|
233 |
+
dataset_name, text_column, split, max_samples
|
234 |
+
)
|
235 |
+
st.success("Dataset loaded successfully!")
|
236 |
+
except Exception as e:
|
237 |
+
st.error(f"Error loading dataset: {str(e)}")
|
238 |
+
|
239 |
+
# Initialize session state variables if they don't exist
|
240 |
+
if 'chatbot' not in st.session_state:
|
241 |
+
st.session_state.chatbot = None
|
242 |
+
|
243 |
+
if 'messages' not in st.session_state:
|
244 |
+
st.session_state.messages = []
|
245 |
+
|
246 |
+
# Create tabs for chat and metrics
|
247 |
+
chat_tab, metrics_tab = st.tabs(["Chat", "Metrics"])
|
248 |
+
|
249 |
+
with chat_tab:
|
250 |
+
# Display existing messages
|
251 |
+
for message in st.session_state.messages:
|
252 |
+
with st.chat_message(message["role"]):
|
253 |
+
st.markdown(message["content"])
|
254 |
+
|
255 |
+
# Only show chat input if chatbot is initialized
|
256 |
+
if st.session_state.chatbot is not None:
|
257 |
+
if prompt := st.chat_input("Hãy nói gì đó..."):
|
258 |
+
# Add user message
|
259 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
260 |
+
with st.chat_message("user"):
|
261 |
+
st.markdown(prompt)
|
262 |
+
|
263 |
+
# Get chatbot response
|
264 |
+
response, metrics = st.session_state.chatbot.get_response(prompt)
|
265 |
+
|
266 |
+
# Add assistant response
|
267 |
+
with st.chat_message("assistant"):
|
268 |
+
st.markdown(response)
|
269 |
+
with st.expander("Response Metrics"):
|
270 |
+
st.json(metrics)
|
271 |
+
|
272 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
273 |
+
else:
|
274 |
+
st.info("Please load a dataset first to start chatting.")
|
275 |
+
|
276 |
+
with metrics_tab:
|
277 |
+
if st.session_state.chatbot is not None:
|
278 |
+
try:
|
279 |
+
# Get visualizations from session state chatbot
|
280 |
+
fig_similarity, fig_response_time, fig_tokens, fig_topics = st.session_state.chatbot.get_metrics_visualizations()
|
281 |
+
|
282 |
+
col1, col2 = st.columns(2)
|
283 |
+
with col1:
|
284 |
+
st.plotly_chart(fig_similarity, use_container_width=True)
|
285 |
+
st.plotly_chart(fig_tokens, use_container_width=True)
|
286 |
+
|
287 |
+
with col2:
|
288 |
+
st.plotly_chart(fig_response_time, use_container_width=True)
|
289 |
+
st.plotly_chart(fig_topics, use_container_width=True)
|
290 |
+
|
291 |
+
# Display statistics
|
292 |
+
st.subheader("Overall Statistics")
|
293 |
+
metrics_history = st.session_state.chatbot.metrics_history
|
294 |
+
if len(metrics_history['similarities']) > 0:
|
295 |
+
stats_col1, stats_col2, stats_col3 = st.columns(3)
|
296 |
+
with stats_col1:
|
297 |
+
st.metric("Avg Similarity",
|
298 |
+
f"{np.mean(list(metrics_history['similarities'])):.3f}")
|
299 |
+
with stats_col2:
|
300 |
+
st.metric("Avg Response Time",
|
301 |
+
f"{np.mean(list(metrics_history['response_times'])):.3f}s")
|
302 |
+
with stats_col3:
|
303 |
+
st.metric("Total Tokens Used",
|
304 |
+
sum(metrics_history['token_counts']))
|
305 |
+
else:
|
306 |
+
st.info("No chat history available yet. Start a conversation to see metrics.")
|
307 |
+
except Exception as e:
|
308 |
+
st.error(f"Error displaying metrics: {str(e)}")
|
309 |
+
else:
|
310 |
+
st.info("Please load a dataset first to view metrics.")
|
311 |
+
|
312 |
+
if __name__ == "__main__":
|
313 |
+
main()
|