Spaces:
Runtime error
Runtime error
File size: 5,115 Bytes
1bb90fa 2c140eb 777a816 2c140eb 3388bb6 2c140eb 970c656 2c140eb 970c656 2c140eb 970c656 5648cf2 970c656 9dd993b 970c656 179180d 970c656 a1ed4e4 970c656 9dd993b 179180d 970c656 9dd993b 970c656 179180d 970c656 9dd993b 970c656 179180d 970c656 9d9baef 2ac1c76 970c656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import data
import torch
import gradio as gr
from models import imagebind_model
from models.imagebind_model import ModalityType
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = imagebind_model.imagebind_huge(pretrained=True)
model.eval()
model.to(device)
def image_text_zeroshot(image, text_list):
image_paths = [image]
labels = [label.strip(" ") for label in text_list.strip(" ").split("|")]
inputs = {
ModalityType.TEXT: data.load_and_transform_text(labels, device),
ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
}
with torch.no_grad():
embeddings = model(inputs)
scores = (
torch.softmax(
embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1
)
.squeeze(0)
.tolist()
)
score_dict = {label: score for label, score in zip(labels, scores)}
return score_dict
def audio_text_zeroshot(audio, text_list):
audio_paths = [audio]
labels = [label.strip(" ") for label in text_list.strip(" ").split("|")]
inputs = {
ModalityType.TEXT: data.load_and_transform_text(labels, device),
ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device),
}
with torch.no_grad():
embeddings = model(inputs)
scores = (
torch.softmax(
embeddings[ModalityType.AUDIO] @ embeddings[ModalityType.TEXT].T, dim=-1
)
.squeeze(0)
.tolist()
)
score_dict = {label: score for label, score in zip(labels, scores)}
return score_dict
def video_text_zeroshot(video, text_list):
video_paths = [video]
labels = [label.strip(" ") for label in text_list.strip(" ").split("|")]
inputs = {
ModalityType.TEXT: data.load_and_transform_text(labels, device),
ModalityType.VIDEO: data.load_and_transform_video_data(video_paths, device),
}
with torch.no_grad():
embeddings = model(inputs)
scores = (
torch.softmax(
embeddings[ModalityType.AUDIO] @ embeddings[ModalityType.TEXT].T, dim=-1
)
.squeeze(0)
.tolist()
)
score_dict = {label: score for label, score in zip(labels, scores)}
return score_dict
def inference(
task,
text_list=None,
image=None,
audio=None,
video=None,
):
if task == "image-text":
result = image_text_zeroshot(image, text_list)
elif task == "audio-text":
result = audio_text_zeroshot(audio, text_list)
elif task == "video-text":
result = video_text_zeroshot(video, text_list)
else:
raise NotImplementedError
return result
def main():
inputs = [
gr.inputs.Radio(
choices=[
"image-text",
"audio-text",
"video-text",
],
type="value",
default="image-text",
label="Task",
),
gr.inputs.Textbox(lines=1, label="Candidate texts"),
gr.inputs.Image(type="filepath", label="Input image"),
gr.inputs.Audio(type="filepath", label="Input audio"),
gr.inputs.Video(type="filepath", label="Input video"),
]
iface = gr.Interface(
inference,
inputs,
"label",
examples=[
["image-text", "A dog|A car|A bird", "assets/dog_image.jpg", None, None],
["image-text", "A dog|A car|A bird", "assets/car_image.jpg", None, None],
["audio-text", "A dog|A car|A bird", None, "assets/bird_audio.wav", None],
["video-text", "A dog|A car|A bird", None, "assets/dog_video.mp4", None],
],
description="""<p>This is a simple demo of ImageBind for zero-shot cross-modal understanding (now including image classification, audio classification, and video classification). Please refer to the original <a href='https://arxiv.org/abs/2305.05665' target='_blank'>paper</a> and <a href='https://github.com/facebookresearch/ImageBind' target='_blank'>repo</a> for more details.<br>
To test your own cases, you can upload an image, an audio or a video, and provide the candidate texts separated by "|".<br>
You can duplicate this space and run it privately: <a href='https://huggingface.co/spaces/OFA-Sys/chinese-clip-zero-shot-image-classification?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>""",
title="ImageBind: Zero-shot Cross-modal Understanding",
)
iface.launch()
if __name__ == "__main__":
main()
|