Spaces:
Running
Running
File size: 5,554 Bytes
90ee73b dfcc271 90ee73b f3a1f2e 337bc14 00f521e 90ee73b f3a1f2e 00f521e 90ee73b 20ff640 f3a1f2e 09f95d8 220d1de 09f95d8 220d1de 09f95d8 90ee73b 20b95d1 5114719 1514a70 5114719 90ee73b f3a1f2e 87d5fe9 f3a1f2e 90ee73b 337bc14 1514a70 a67daee 1514a70 337bc14 20b95d1 4fc9767 09f95d8 220d1de 09f95d8 90ee73b 24e347a 90ee73b 87d5fe9 337bc14 87d5fe9 337bc14 f3a1f2e 337bc14 27f6e5d 337bc14 27f6e5d a67daee 006c2e8 337bc14 1514a70 337bc14 f3a1f2e 87d5fe9 7096730 87d5fe9 dfcc271 13600b0 87d5fe9 90ee73b 337bc14 90ee73b 337bc14 90ee73b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import gradio as gr
import torch
import os
import spaces
import uuid
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
size=128
# Constants
bases = {
"ToonYou": "frankjoshua/toonyou_beta6",
"epiCRealism": "emilianJR/epiCRealism"
}
step_loaded = None
base_loaded = "ToonYou"
motion_loaded = None
device = "cuda"
# Ensure model and scheduler are initialized in GPU-enabled function
if not torch.cuda.is_available():
device = "cpu"
#raise NotImplementedError("No GPU detected!")
dtype = None
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
# Safety checkers
from safety_checker import StableDiffusionSafetyChecker
from transformers import CLIPFeatureExtractor
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to(device)
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")
def check_nsfw_images(images: list[Image.Image]) -> list[bool]:
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
has_nsfw_concepts = safety_checker(images=[images], clip_input=safety_checker_input.pixel_values.to(device))
return has_nsfw_concepts
# Function
@spaces.GPU(enable_queue=True)
def generate_image(prompt, base, motion, step, progress=gr.Progress()):
global step_loaded
global base_loaded
global motion_loaded
print(prompt, base, step)
if step_loaded != step:
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
step_loaded = step
if base_loaded != base:
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
base_loaded = base
if motion_loaded != motion:
pipe.unload_lora_weights()
if motion != "":
pipe.load_lora_weights(motion, adapter_name="motion")
pipe.set_adapters(["motion"], [0.7])
motion_loaded = motion
progress((0, step))
def progress_callback(i, t, z):
progress((i+1, step))
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step, callback=progress_callback, callback_steps=1)
has_nsfw_concepts = check_nsfw_images([output.frames[0][0]])
if has_nsfw_concepts[0]:
gr.Warning("NSFW content detected.")
return None
name = str(uuid.uuid4()).replace("-", "")
path = f"/tmp/{name}.mp4"
export_to_video(output.frames[0], path, fps=10)
return path
# Gradio Interface
with gr.Blocks(css="style.css") as demo:
gr.HTML(
"<h1><center>AnimateDiff-Lightning ⚡</center></h1>" +
"<p><center>Lightning-fast text-to-video generation</center></p>" +
"<p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>"
)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label='Prompt (English)'
)
with gr.Row():
select_base = gr.Dropdown(
label='Base model',
choices=[
"ToonYou",
"epiCRealism",
],
value=base_loaded,
interactive=True
)
select_motion = gr.Dropdown(
label='Motion',
choices=[
("Default", ""),
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
],
value="",
interactive=True
)
select_step = gr.Dropdown(
label='Inference steps',
choices=[
('1-Step', 1),
('2-Step', 2),
('4-Step', 4),
('8-Step', 8)],
value=4,
interactive=True
)
submit = gr.Button(
scale=1,
variant='primary'
)
video = gr.Video(
label='AnimateDiff-Lightning',
autoplay=True,
height=size,
width=size,
elem_id="video_output"
)
prompt.submit(
fn=generate_image,
inputs=[prompt, select_base, select_motion, select_step],
outputs=video,
)
submit.click(
fn=generate_image,
inputs=[prompt, select_base, select_motion, select_step],
outputs=video,
)
demo.queue().launch() |